
eNTERFACE’06, July 17th – August 11th, Dubrovnik, Croatia  ⎯ Final Project Report 
 

 

 
Abstract—The advancement of traffic and computer networks 

makes the world more and more internationalized and increases 
the frequency of communications between people using different 
languages and expressing different nonverbal behaviors. To im-
prove communication of embodied conversational agent (ECA) 
systems with their human users, the importance of their capability 
to cover the cultural differences emerged. Various excellent ECA 
systems are developed and proposed previously, however, the 
cross-culture communication issues are seldom addressed by 
researchers. This project aims to explore the possibility of rapidly 
building multicultural and multimodal ECA inter-faces for cus-
tomer service applications with a generic framework connecting 
their functional blocks. 
 

Index Terms— embodied conversational agent, distributed 
system, blackboard, user interface, non-verbal interaction 
 

I. PROJECT BACKGROUND 
MBODIED conversational agents (ECA) are computer 
generated humanlike characters that interact with human 
users in face-to-face conversation and possess the follow-

ing abilities: 
• Recognize and respond to verbal and nonverbal input 
• Generate verbal and nonverbal output 
• Perform conversational functions (e.g. utterance turn tak-

ing, feedback and repair mechanisms) 
• Give signals that indicate the state of conversations as well 

as to contribute new propositions 
To achieve these features, system assemblies such as natural 

language processing, sensor signal processing, verbal and 
nonverbal behavior understanding, facial expression recogni-
tion, dialogue management, personality modeling, emotional 
modeling, natural language generation, facial expression gen-
eration, gesture generation, and CG animator are required. 
These functions actually involve multiple disciplines like A.I., 
computer graphics, cognitive science, sociology, linguistics, 
psychology, etc. They are in so broad range of research disci-
plines such that virtually no single research group can cover all 

aspects of a fully operating ECA system. Moreover, the soft-
ware developed from individual research result is usually not 
meant to cooperate with each other and is designed for different 
purpose. Hence, if there is a common and generic backbone 
framework that connects a set of reusable modulized ECA 
software components, the rapid building of ECA systems will 
become possible and the redundant efforts and resource uses of 
ECA researches can be prevented. For these reasons, our group 
is developing such a generic ECA platform and researching the 
adequate communicative interfaces between ECA software 
blocks. As a result, a basic system model is developed with a 
prototype system and described in the next section.  

On the other hand, the advancement of traffic and computer 
networks makes the world more and more internationalized and 
increases the frequency of communications between people 
using different languages and expressing different nonverbal 
behaviors. To improve the communication of ECA systems 
with their human users, the importance of their capability to 
cover the cultural differences emerged. Although various ex-
cellent agent interface systems are developed and proposed 
previously, the cross-culture communication issues are seldom 
addressed by researchers. 

II. PROJECT OBJECTIVES 
To explore the issues that may occur in multicultural com-

munication, especially nonverbal communicative behaviors 
performed spontaneously by humans; we propose this project 
with the objective to develop a customer service application 
with an ECA interface which serves human users from different 
cultures based on the generic ECA framework. Based on the 
discussion among the team members prior to the workshop, the 
target application is decided to be a tour guide agent of Du-
brovnik city where is specified as a UNESCO Worlds Heritage. 
Since most of the team members come from Japan and Croatia, 
it is most convenient to gather first-hand Japanese and Croatian 
cultural information where the differences are supposed to be 
fairly obvious. A guide agent dynamically changes its behav-
iors either in Japanese way or in Croatian way according to its 

An Agent Based Multicultural User Interface in a 
Customer Service Application 

Hung-Hsuan Huang1, Aleksandra Cerekovic2, Kateryna Tarasenko1, Vjekoslav Levacic2, Goranka Zo-
ric2, Margus Treumuth4, Igor S. Pandzic2, Yukiko Nakano3, and Toyoaki Nishida1 

1Graduate School of Informatics, Kyoto University, Japan, 2Faculty of Electrical Engineering and 
Computing, University of Zagreb, Croatia, 3Department of Computer, Information and Communication 
Sciences, Tokyo University of Agriculture & Technology, Japan, 4Institute of Computer Science, Uni-

versity of Tartu, Estonia 
 

E 



eNTERFACE’06, July 17th – August 11th, Dubrovnik, Croatia  ⎯ Final Project Report 
 

 

visitor was thus suggested. On the other hand, because of the 
lack of good-quality speech synthesizer/recognizer for Croatian, 
the guide agent will speak and listen to English in its Croatian 
mode. 

In this system, the agent mediates the site seeing information 
of Dubrovnik to its visitors via verbal and non-verbal interac-
tions. An example scenario is: when a visitor comes to the 
system, the system recognizes the visitor as a Japanese or 
Croatian from the combination of the speech recognizer’s result 
and the non-verbal behaviors of the visitor such as bowing in 
greeting in Japanese culture. The agent then switches to its 
Japanese mode, that is, speaks Japanese and behaves like a 
Japanese to accept and answer the queries from the visitor 
while performing culture-dependent gestures according to 
predefined scenarios in that session. At the same time, the 
visitor can interact with the agent not only by natural language 
speaking but also by non-verbal behaviors such as pointing to 
an object on the background image or raising his (her) hand to 
indicate that he (she) wants to ask a question. Besides, to reduce 
the system complexity and prevent the drawbacks come from 
an ill-implemented 3D environment, in the prototype system 
that is going to be implemented during eNTERFACE’06, scene 
transitions are approximated by camerawork and the changes of 
realistic background photos instead of building a full 3D virtual 
world. 

III. GENERIC ECA FRAMEWORK 
To connect many heterogeneous functional components to 

an integral virtual human, the consistency of all communication 
channels and the timing synchronization of all components will 
be very important issues. Also, to handle nonverbal inputs from 
humans, the capability to handle streaming data from sensors in 
real-time is indispensable. Our platform is built upon a routing 
and communication protocol of cooperating A.I. programs, 
OpenAIR [1]. The platform mediates the information exchange 
of ECA software components with XML messages via shared 
memory mechanism (blackboard or white boards in 
OpenAIR’s context) and will have the following advantages: 

• Distributed computing model over network eases the in-
tegration of legacy systems 

• Communication via XML messages eliminates the de-
pendency on operating systems and programming lan-
guages 

• Simple protocol using light weight messages reduces the 
computing and network traffic overhead 

• Prioritized messages make quality of service control pos-
sible and facilitates real-time event processing (not im-
plemented yet) 

• Explicit timing management mechanism (partially im-
plemented) 

• Support discrete messages and streaming sensor data at the 
same time (partially implemented) 

• The use of shared backbone blackboards flatten the com-
ponent hierarchy, shorten the decision making path and 
can realize reflexive behaviors 

• Possible to use multiple logically isolated blackboards 
rather than traditional single blackboard (not implemented 
yet) 

• Components can communicate with each other directly or 
via blackboard(s) (not implemented yet) 

• Easy to switch or replace components which have the same 
function if they understand and generate messages in the 
same type 

Figure 1 shows the conceptual diagram of the GECA 
framework and the configuration of the planed Dubrovnik tour 
guide agent. Based on this framework, we are specifying an 
XML based high-level protocol for the data exchanges between 
the components plugged into the GECA platform. Every 
GECA message belongs to a message type, for example, “in-
put.speech.text”, “output.action.speak”, etc. Each message 
type has a specified set of XML elements and attributes, for 
example, “intensity”, “duration”, “start_time”, etc. The 
message flow works like the following scenario upon the 
platform, when a component starts; it registers its contact in-
formation (unique name, IP address, etc) to CNS (Central 
Naming Service) component and subscribes its interested 
message type(s) to the AIRCentral component. Then the mes-

Fig. 1 The conceptual diagram of GECA framework and the configuration of the eNTERFACE06 
agent

OpenAIR

Black
Board 2CNS ConfigAIRCentral

C01.Motion
Capture

Data 
Acquire

C12.Visage
Player

Wrapper

ECA Dedicated AIR Server

C05.CAST

Wrapper

C06.AIML
(Japanese)

Wrapper

C03.Japanese
Speech

Recognition

SAPI5
Wrapper

GECA Platform

C02.Data
Glove

Data
Acquire

C04.Motion
Sensor

Data
Acquire

C08.BEAT

Wrapper

C09.English
Speech

Recognizer

JSAPI
Wrapper

C10.English
Speech

Synthesizer

JSAPI
Wrapper

C# AIR Plug

C07.AIML
(English)

Wrapper

C11.Anim.
Category

Wrapper

Java AIR Plug C++ 
AIR Plug

GECAML

Black
Board 1C13.Central Controller

OpenAIR

Black
Board 2CNS ConfigAIRCentral

C01.Motion
Capture

Data 
Acquire

C01.Motion
Capture

Data 
Acquire

C12.Visage
Player

Wrapper

C12.Visage
Player

Wrapper

ECA Dedicated AIR Server

C05.CAST

Wrapper

C05.CAST

Wrapper

C06.AIML
(Japanese)

Wrapper

C06.AIML
(Japanese)

Wrapper

C03.Japanese
Speech

Recognition

SAPI5
Wrapper

C03.Japanese
Speech

Recognition

SAPI5
Wrapper

GECA Platform

C02.Data
Glove

Data
Acquire

C02.Data
Glove

Data
Acquire

C04.Motion
Sensor

Data
Acquire

C04.Motion
Sensor

Data
Acquire

C08.BEAT

Wrapper

C08.BEAT

Wrapper

C09.English
Speech

Recognizer

JSAPI
Wrapper

C09.English
Speech

Recognizer

JSAPI
Wrapper

C10.English
Speech

Synthesizer

JSAPI
Wrapper

C10.English
Speech

Synthesizer

JSAPI
Wrapper

C# AIR Plug

C07.AIML
(English)

Wrapper

C07.AIML
(English)

Wrapper

C11.Anim.
Category

Wrapper

C11.Anim.
Category

Wrapper

Java AIR Plug C++ 
AIR Plug

GECAML

Black
Board 1C13.Central Controller



eNTERFACE’06, July 17th – August 11th, Dubrovnik, Croatia  ⎯ Final Project Report 
 

 

sages in those types will be sent to the component from the 
specified blackboard (or a whiteboard in OpenAIR’s termi-
nology) which behaves like a shared memory between the 
components when some other component published the mes-
sages. That component then processes the data it got and pub-
lishes its own output to the shared blackboard in certain mes-
sage type.  

By utilizing the communicative functions provided by the 
Air Plug libraries (currently we have developed the C#, C++ 
version libraries and a customized Java reference implementa-
tion from mindmakers.org) which are a part of the platform, an 
ECA system builder needs to develop a small piece program 
called a wrapper in order to handle and convert the input/output 
of an existing software component to be GECAML (Generic 
ECA Markup Language) compliant. After doing this, the het-
erogeneous nature of components that provide the same capa-
bility (for example, both of a MS SAPI4 TTS and a JSAPI TTS 
provide the same capability of the agent, i.e. to speak out from 
text) can be hided and behave identically to the other software 
components. 

IV. DUBROVNIK TOUR GUIDE AGENT 
During the eNTERFACE06 project’s four-week period, the 

participants of this project cooperated to develop the tour guide 
agent described in section II. In this section, we discuss the 
GECA software components that are used in this project and 
the main tasks that were dealt during the project period. 

A. Software Component Configuration 
This agent was planned with the component configuration 

depicted in Figure 1. The follows are the brief descriptions of 
those software components.  
C01. Motion capture component. This component utilizes a 

simple motion capture device [2] using IR technology to 
roughly approximate a predefined set of human visitor’s 
non-verbal behaviors. 

C02. Data glove component. This component acquires data 
from a data glove hardware device and reports recognized 
movements of the visitor’s fingers to the other compo-
nents. 

C03. Japanese speech recognition component. This component 
is a wrapped SAPI-5 Japanese recognition engine, Julius 
[3] and has been implemented. 

C04. Motion sensor component. This component acquires data 
from a 3 dimensional acceleration sensor [4] which is 
attached on the visitor’s head to detect head shaking and 
nod movements. This component has been implemented. 

C05. Japanese spontaneous gesture generating component. 
This component is a wrapper of CAST [5] engine which 
generates the type and timing information of spontaneous 
gestures from Japanese utterance input string. This 
component has been implemented. 

C06. AIML interpreter components for Japanese. This com-
ponent wraps a Java implementation [6] of AIML [7] 
interpreter. It reads one or more AIML scripts which 
specify the agent’s verbal and nonverbal responses to 
certain input behaviors from the visitors. Therefore, this 

component behaves like the brain of the agent and thus 
the current agent shows only reflexive behaviors with 
some context referencing capability comes with AIML 
and has no internal state. Besides, because the original 
AIML does not accept customized tags, a set of tags 
specifying visitor’s non-verbal inputs and agent’s 
non-verbal outputs must be encoded into the script. The 
wrapper of this component has been implemented but the 
scenario script(s) has to been defined during the eN-
TERFACE workshop. 

C07. AIML interpreter components for English. The same as 
above except this component handles English inputs / 
outputs. 

C08. English spontaneous gesture generating component. This 
component is a wrapper of BEAT [8] which generates the 
type and timing information of spontaneous gestures 
from English utterance input string. This component has 
not been implemented yet. 

C09. English speech recognition component. This component 
wraps a speech recognition engine to recognize English 
speaking of the visitor and from predefined grammar rule 
and sends the recognized result as a text string to the 
subscribed components. This component has not been 
completed yet. 

C10. English Text-To-Speech component. This component 
wraps an English Text-To-Speech (TTS) engine to gen-
erate the voice output of the agent and visime events to 
drive the character animator to move the agent’s lips. This 
component has not been completed yet. 

C11. Animation category component. This component is a 
database storing the number values of MPEG4 FBA pa-
rameters of a predefined set of animation / action to drive 
the character animation in real-time. This component has 
not been implemented yet. 

C12. Character animation player component. This component 
is a wrapped character animation player which is im-
plemented in visage|SDK [9]. It accepts driving event 
messages from the animation category and speech syn-
thesizer component and performs the specified character 
animation. 

C13. Central controlling component dedicated to ECA. This 
component is one part of the OpenAIR server and handles 
synchronization among the components, ensures integrity 
of all output modals, selects the actions to perform if there 
is some contradiction.A conclusion section is not re-
quired. Although a conclusion may review the main 
points of the paper, do not replicate the abstract as the 
conclusion. A conclusion might elaborate on the impor-
tance of the work or suggest applications and extensions.  



eNTERFACE’06, July 17th – August 11th, Dubrovnik, Croatia  ⎯ Final Project Report 
 

 

However, during the development period, there were some 
modifications made to the original plan. Because the venue of 
the workshop is in Croatia, we decided to use pre-recorded 
Croatian voice instead of English TTS and use English speech 
recognition engine to recognize a limited range of Croatian 
vocabularies. Figure 2 shows the data flow among the com-
ponents of the actually built Dubrovnik tour guide agent. The 
speech recognition component and sensor components gather 
and recognize the verbal and nonverbal inputs from the human 
user and send the results to the AIML component. The inputs 
from different modals are combined by the wrapper of AIML 
component and are matched with predefined scenario AIML 
scripts. The AIML then sends the matched response which may 
include utterance and action tags to speech synthesizer and 
animation category component. Depends on the design of the 
spontaneous gesture generating component, the speech syn-
thesizer component may output the generated voice by itself 
and send the visime events to the animator to drive the agent’s 
lips or leave these jobs to the other components. In either way, 
timing information is sent to the spontaneous gesture generator. 
The spontaneous gesture generator inserts action tags into the 
utterance according to the timing information from the speech 
synthesizer and its natural language tagging companion. The 
animation category listens to action queries from the sponta-
neous gesture generating component or the AIML component 
and sends FBA (Facial Body Animation) parameters to drive 
the character animator. The character animator listens to action 
and visime events and play them in real-time. Some character 
animators (e.g. visage) may also provide TTS support; in that 
case, it also listens to the utterance output of the spontaneous 
gesture generating component. Furthermore, shortcuts between 
the sensor components and the animator that bypass the pipe-
line are allowed and make reflexive behaviors of the agent 
possible, and this is one of the strengths of this framework over 
the other ECA architectures. 

B. Non-verbal input recognition 
To provide an immersive environment for the user to interact 

with the tour guide agent, a LCD projector with 
tilt-compensation function is used to project a large enough 
image of the agent on the screen. The user then stands in front 
of the screen and interact with the guide agent as (s)he is really 
in the virtual Dubrovnik space. 

In the non-verbal input recognition issue, the aim is to detect 
the following behaviors from the user: 
• Get the agent’s attention 
• Point to the interested objects shown on the display 
• Show the willing to ask a question 
• Interrupt the agent’s utterance 
• Shake head and nod to express positive and negative an-

swers 
Because of the nature of the eNTERFACE workshop, only 

small size and portable sensor devices are adopted in this pro-
ject. These non-verbal behaviors are recognized by using the 
data from data gloves, infrared camera, and acceleration sen-
sors. 
Nissho Electronics Super Glove  

This data glove is a simple wearable input device which user 
can put on his right hand to detect finger curvature. Ten sensors, 
two for each finger, are used to detect how fingers are bent. 
Prior to first use, user must calibrate the glove's sensor readings 
by putting the fingers into three different positions. Data glove 
is connected with a cable to the control box which is a power 
input device and a processing unit of the data collected from the 
sensors. Control box can be connected to the PC with a serial 
cable and a serial port reader can be used to read the glove data. 
Data from the glove is represented with thirty ASCII characters. 
Three ASCII characters are assigned to each sensor where 
"000" means that a finger is straight and "900" means that it is 
fully curved. In a program we developed, we assign a threshold 
value of when finger becomes bent, which means that we detect 
only two states of the finger. By mapping finger shapes into the 
gestures it is easy to detect different kinds of positions like 

Croatian
AIML

Spontaneous
Gesture

Generator

Animation
Database

Character
Animator

Motion
Capture

Motion
Sensor

Data
Glove

Japanese
S.R.

Croatian
S.R.

Input
Integrator

Japanese
AIML

MPEG4 FBA Parameters 

Recorded
Voice

Voice wave file / lip sync event 

Scenario script

Animation specifications

Animation specifications

Scenario script

Croatian
AIML

Spontaneous
Gesture

Generator

Animation
Database

Character
Animator

Motion
Capture

Motion
Sensor

Data
Glove

Japanese
S.R.

Croatian
S.R.

Input
Integrator

Motion
Capture

Motion
Sensor

Data
Glove

Japanese
S.R.

Croatian
S.R.

Input
Integrator

Japanese
AIML

MPEG4 FBA Parameters 

Recorded
Voice

Voice wave file / lip sync event 

Scenario script

Animation specifications

Animation specifications

Scenario script

Fig. 2 The data flow of the Dubrovnik tour guide agent



eNTERFACE’06, July 17th – August 11th, Dubrovnik, Croatia  ⎯ Final Project Report 
 

 

pointing or five fingers straight. 
NaturalPoint OptiTrack FLEX3 

Infrared reflecting materials are used to help detecting the 
approximate pointing direction of the user's right hand. Mate-
rial in a shape of a strap is put around the wrist of the right hand 
and its spatial coordinates are detected by the OptiTrack in-
frared camera and projected into the 2D plane. 

During initial use, system must be calibrated. To calibrate the 
system, user stands in front of the projection screen and a 
camera and follows the software instructions to point to the 
each corner of the projection screen. Projected coordinates of 
the upper corners are bent inward and give overall projection 
shape resembling the trapezoid because camera stands closer to 
the floor. The concept is shown in figure 3. That inevitably 
leads to the curved projection of the hand movement. Never-
theless, it is assumed that interesting scenario objects will have 
perceivable size compared to the projection screen and that 
approximate pointing coordinates should be detectable. 

After the trapezoid's corner points are calculated we ap-
proximate the area of hand movement with a rectangle by av-
eraging trapezoid's neighbor values. The projection screen is 
divided into the grid of arbitrary size. When user is pointing to 
the screen, his pointing coordinates are inside one of the grid's 
cell. Interesting scenario objects are mapped to distinct cells 
and therefore pointing at scenario object can be easily detected. 
This concept is shown in figure 4. 

Camera's API gives us the information of where the detected 
object's center of mass is. If multiple infrared sources exist, 
more than one center of mass will be detected. This can espe-
cially occur when marker, due to the various reasons, has in-
terruption in continuity of its area. To remove that problem, we 
use K-Means algorithm to group close centers. Software also 

removes all centers which show spatial stability in time. Such 
an example is a LCD projector which is put in front of the 
camera and disturbs the detection by constantly emitting the 
infrared light. 

Software detects hand stability and waving. To detect if user 
holds his hand in a stable position, we need a time buffer of 
marker coordinates. Buffer size is determined by the camera's 
frame rate. After each frame algorithm calculates the central 
point of all points in a buffer and distance from that central 
point to each other point in a buffer. If all distances are below 
the predefined percent of screen width, hand stability is alerted. 

Swing is defined as a hand movement from one point to an-
other, before hand changes movement direction. Software 
detects waving which goes from the elbow to the forearm, 
where the marker's waving is visible on the screen and recog-
nizable by the system. Waving pattern is characterized with two 
specific features. First one is that a length of each swing is 
approximately the same as a previous one. Also, we tend to 
wave in a constant speed without variations in a hand move-
ment. Therefore, gradient of a hand movement and movement 
length seem like a suitable features to detect the waving. To 
detect the hand movement, buffer is filled with the waving data. 
Each change in direction of the marker that is larger than some 
threshold is detected as a new swing. Pivot element, first ele-
ment in a buffer, is taken as a reference point to calculate if 
waving is occurring. By comparing other waving elements 
found in a buffer with a pivot element, specifically their gra-
dient, length and number of swings, we may detect and sig-
nalize the waving. 
NEC/Tokin 3D Motion Sensor 

It is a sensor that can detect the change of acceleration in 
three dimensions. This small-size sensor is attached on the top 
of the headset that is usually used for gathering speech inputs, 
and the data from it is used to detect the movement of the user’s 
head. A component that detects two types of head movements, 
nodding and shaking was developed. It generates output mes-
sage to represent positive (nodding) and negative (shaking) 
verbal answers. Therefore, the user can nod instead of saying 
“yes” or shake his (her) head instead of saying “no.” 

Data glove and hand movement detection programs work as 
a separate .NET applications. Each program has an OpenAir 
plug implementation, sending the data which InputManager 
component receives and combines into the new output (see 
Table 1). InputManager component acts as a fusion component 
of the different input modalities, and is made as a simple state 
machine. It sends the output only when new gesture is detected. 

Upper left corner 
point where the user 
points.

Averaged 
pointing 
coordinates

Camera  screen 
capture area

Upper left corner 
point where the user 
points.

Averaged 
pointing 
coordinates

Camera  screen 
capture area

Fig. 3 The calibration of project 2D coordinates 

Poiont at cell [0,0]

Grid is set as 2 X 2 
array

Poiont at cell [0,0]

Grid is set as 2 X 2 
array

Fig. 4 Mapping between raw data and application coordi-
nates



eNTERFACE’06, July 17th – August 11th, Dubrovnik, Croatia  ⎯ Final Project Report 
 

 

TABLE 1 
THE USE OF SENSOR DATA 

Component 
name 

finger_shape 

Type Content Description 
FiveUps Five fingers 

straight 
Pointing 2 finger straight 
Victory 2,3 fingers straight
Unknown Any other combi-

nation 

Outputs 
in-
put.shape.fin
gers 

  
Component 
name   

wrist_position 

Type Content Description 
UNKNOWN[X,Y 
or OUTSIDE], 
where the X,Y is 
the cell where the 
marker is detected 

 

WAVING_DETE
CTED[X,Y | 
OUTSIDE] 

 

HAND_STABLE[
X,Y | OUTSIDE] 

 

Outputs 
in-
put.position.
wrist   

CALIBRATION[c
alibration mes-
sage] 

Sends the message 
in which status the 
calibration is 

Component 
name  

input_manager 

Type Content Description 
POINTING[X,Y|O
UTSIDE] 

Pointing + 
HAND_STABLE 
+ coordinates 

WAVING FiveUps + 
WAVING_DETE
CTED  

ATTENTION FiveUps or Vic-
tory + 
HAND_STABLE 

UNKNOWN  

Outputs 
in-
put.manager.
fusion 

  

C. Croatian Speech Input / Output 
As there is no Croatian speech recognizer it is decided that 

we will use English speech recognizer to recognize Croatian. 
Therefore simple rule grammar had to be created to recognize 
some words according to the agent scenario. The grammar for 
Croatian is defined by using English alphabet to approximate 
the pronunciation of Croatian even those words do not exist in 
English. CloudGarden [10] library is used to access SAPI5 
compliant Speech-Recognition engine by standard Java Speech 
SAPI. 

It was possible to create grammar according to the scenario 
to make English speech recognizer to recognize Croatian. We 
have made such grammar to recognize both only Croatian 
words and whole sentences. Both ways were quiet successful. 
However, several problems came out. Some Croatian words 
were impossible to write with English alphabet, therefore it was 
better to avoid them and use some other words instead. Also, if 
grammar contained several very similar words, they were 
sometimes mixed by recognizer, so it is better to choose words 
that are not so similar (since scenario was not that strict this was 
possible). And the last thing, although the recognition worked 
with all tested subjects, recognition with some was slightly 

better. 
Once we had Croatian scenario, a native Croatian speaker 

has recorded speech the agent was supposed to say in certain 
situation in the noise free room. By applying a lip sync appli-
cation we have [11], which takes speech as input and gives 
animation (of the lips) as output, we have created animation 
from the prepared speech files.  

Our automatic lip sync system determines the motion of the 
mouth and tongue during the speech by speech signal analysis. 
Neural networks are used to classify the speech into a sequence 
of visemes (visual representatives of phonemes). In order to 
obtain training data for the NNs, a training set with visemes was 
collected. The speech is first preprocessed. Input in NNs are 
MFCCs calculated from training data and output is different 
viseme classes. When correct viseme is chosen, it can be sent to 
animated face model. MPEG-4 standard is used for generating 
facial animation since facial animation can be generated for any 
parameterized face model if the visemes are known. The 
method is implemented in C++. The program reads speech 
from pre-recorded audio files and continuously performs 
spectral analysis of the speech. Suitable visemes are shown on 
the screen or saved in the FBA file. 

At the end, we had a pair of speech-animation files for every 
situation according to the scenario. 

D. Action Animation Database 
By an animated action we mean a set of Face and Body 

animation parameters displayed within the same time interval 
to produce a visual agent action, such as nod or gesture.  The 
queries for animated actions for the agent are stored in the 
AIML script. A single database query corresponds to an AIML 
category consisting of a pattern (typically, a human’s action ) 
and a template, the agent’s reaction to the pattern. The de-
scription of an animation, which is to be started simultaneously 
with a particular part of the agent’s utterance, is incorporated in 
the <template> tag using the “[“  and  ”]”  characters.  

Below is a simple example of an AIML category with 
non-verbal input/output descriptions: 
 
<category> 
<pattern>What is this 
[PointingAt Object=“monastery”]                                      
</pattern><template>This is the big Onofrio’s Fountain 
[Action Type="pointing" SubType="Null" Duration="2300" 
Intensity="0" X="0" Y="0" Z="0" Direction="rightUp" 
ActivationFunction="sinusoidal"/] built in 15th 
century. The Fountain is a part of the town's water 
supply system which Onofrio managed to create by 
bringing the water from the spring located 20 km away 
from town.</template></category> 

 
Here, the non-verbal action “pointing” of the agent character 

is described. Its duration is specified by opening tag and closing 
tags that enclose a segment of an utterance and thus the actual 
value depends on the TTS (Text-To-Speech) synthesizer if it 
supports prior phoneme timing output or absolute values in 
milliseconds. The attribute SubType has the value of “Null”, 
as there are no possible subtypes defined for it. The “Intensity” 
attribute is to have integer values, with “0” value meaning that 



eNTERFACE’06, July 17th – August 11th, Dubrovnik, Croatia  ⎯ Final Project Report 
 

 

the intensity is not specified for the action in question. Other 
actions, for which the attribute “intensity” has sense, do have 
an intensity scale specified. For example, to distinguish be-
tween a slight bow used while greeting in European countries 
from the deep Japanese salutation bow, we introduce a scale of 
values for the “bow” action.  

Further, we envisage the use the coordinates (“X”, “Y”, “Z”) 
integer-valued attributes in the future. The meaning of these 
coordinates will be dependent on the action. For example, for 
the “pointing” action such this triad would mean the position on 
the background screen where the agent is supposed to point. At 
the moment the alternate attribute “Direction” is used.  

The “ActivationFunction” attribute stands for the dynamics 
of the action. Possible values are “linear”, which uses a linear 
function to activate the corresponding MPEG4 Face and Body 
Animation parameters (FAPs), “sinusoidal”, which uses 
trigonometric functions to activate the FAPs, and “oscillation” 
function, which is used for the repeated actions, such as “Nod-
ding” or “HeadShaking”. In addition to these attributes, the 
attribute “sync” with possible values “PauseSpeak”, “Be-
foreNext”, “WithNext” specifies the synchronization between 
non-verbal actions and speech synthesizer. 

The action “pointing” is an invocation of one character ac-
tion with the name “pointing” which is stored in a high-level 
action database. The database is currently implemented as one 
part of the visage animator and stores low-level MPEG4 FBA 
parameter specifications as well as run-time configurable pa-
rameters for high-level action invocations. 

Visage operates with FBAPs – a large set face and body 
animation parameters, specified by MPEG4. FBAPs are di-
vided into FAPs (Face animation parameters) and BAPs (body 
animation parameters). The BAP parameters are the angles of 
rotation of body joints connecting different body parts, such as 
toe, ankle, knee, hip, spine joints, shoulder, clavicle, elbow, 
wrist, and the hand fingers. There are 64 low-level FAPs, 
which are closely related to muscle actions and represent a 
complete set of basic facial actions, and two high-level FAPs 
(expression and viseme). 

Example: by analyzing the videos, we found that for the 
pointing gesture can be animated by manipulating such FAPs 
as head_yaw and head_pitch, and the following BAPs: 
l_shoulder_flexion, l_shoulder_abduct, 
l_shoulder_twisting, l_elbow_flexion. We ran a series of 
experiments to set the values of these parameters. 

The analysis of videos to create gestures was pretty difficult 
because we did not use any tool that would translate a gesture in 
to a set of FBAPs. Without it took us from 5 to 30 experiments, 
depending on the complexity of the action, to adjust the pa-
rameters for an action. Needless to say, that such approach is 
rather time-consuming.   

Then, for the most of the actions implemented in our system, 
we divide the duration of it into 3 states: attack, sustain and 
decay. For each of the intervals, depending on the activation 
function of the action in question, we define how the parameter 
value changes as a function of time. For example, in case of 
sinusoidal function (as is with the pointing gesture), in the 

attack phase, the value of the parameters changes as a sinu-
soidal (increasing function) function of time, whereas in the 
sustain (i.e. peak) phase it changes as a constant. Finally, in the 
decay phase the corresponding function is cosinusoidal (de-
creasing). The character animation created for this application 
is listed in Table 2. 
Cultural differences through the non-verbal behavior of 
the agent 

  We observed analyzed non-verbal behaviors of Japanese 
tour guides and took videos. As a result, we tried to implement 
these features in our agent. Also, some very typical emblem 
Japanese gestures, that are not inherent to the European culture, 
were implemented. For example, the so-called “handsCrossed” 
gesture. This gesture seems to be pretty unique, and normally 
draws attention of Western people who first come to Japan and 
are used to head shaking or simply verbal expression of pro-
hibition (See Figure 5 and Figure 6). In Japanese culture, to 
show that something is prohibited, people tend to cross their 
hands before the chest. Sometimes, this action is accompanied 
with head shaking. Similarly, our agent uses this gesture when 
prohibiting in the Japanese mode, in contrast to the European 
mode, where only head shaking is envisaged. 

 

Fig. 6 Another example is the “Negation” gesture in the Japanese mode: 
waving with a hand while the arm is extended. In Japan, the negation is 
expressed by shaking one’s upright hand near one’s mouth with two 
thumbs closer to one’s face. Sometimes shaking head sideways is also 
added. When asking to wait, Japanese people usually show the palm of 
one hand to another person. At times, both hand maybe used. 

Fig. 5 A Japanese emblem gesture to show prohibition



eNTERFACE’06, July 17th – August 11th, Dubrovnik, Croatia  ⎯ Final Project Report 
 

 

TABLE 2 
CHARACTER ACTION ANIMATION CREATED FOR THE DUBROVNIK GUIDE 

APPLICATION 
  Gesture/attributes Values Meaning 
Pointing:  

- Direction 
 
left, leftUp, right, 
rightUp, rightFor-
ward, leftForward, 
backH, backE 

The agent points in the 
directions that semanti-
cally correspond to the 
values defined for this 
attribute. In future, we 
plan to use the coordi-
nates on the screen to 
which the agent should 
point. Thus using direc-
tion instead of the coor-
dinates is a temporarily 
solution. “backE” and 
“backH” values represent 
variations of gestures 
with the elbow bent.  

Bow 
     -Intensity 

1-3 1 corresponds to a shal-
low bow, using only head; 
2- 
is a deeper bow, very 
frequently used by Japa-
nese people in a daily 
conversations, 
3-corresponds to a very 
polite bow, showing a 
high respect to the listener

Invite 
     -Subtype 

Croatian, Japanese The “invite” action  of the 
“Croatian” subtype 

is waving upwards and 
then backwards with the 
left hand, a somewhat 
informal emblem gesture 
meaning inviting. The 
action of the subtype 
“Japanese” has not been 
implemented yet.  

HandsCrossed  This is an emblem Japa-
nese gesture, meaning 
that something is not 
allowed. The hands are 
crossed in front of the 
lower part of the chest  

Nodding  The action meaning both 
in Croatian and Japanese 
agreement, consent. 

ShakeHead  The action meaning both 
in Croatian and Japanese 
negation or disapproval. 

Extend [at the moment, “ex-
tend” means extend-
ing the right arm. In 
the future we might 
need extending the 
left arm as well. Thus, 
the subtype attribute 
might be introduced 
with the “left/right” as 
possible values.] 

This action means right 
arm extended with the 
palm open and oriented 
upwards. The meaning in 
the Japanese culture is 
“wait please”  

Wave [at the moment, 
“wave” means waving 
with the right hand. In 
the future we might 
need waving with the 
left hand as well. Thus 
the subtype attribute 
might be introduced 
with the “left/right” as 
possible values.] 

This action means oscil-
lating right hand waving. 
Used in combination with 
the “extend” action as 
part of the Japanese 
gesture meaning “No. 
This is not true”.    

Expression “smile” This value corresponds 

     -Subtype facial expression “joy” 
defined in the Class 
SimpleFacialExpression 

Walk 
     -Direction 

“right”, “left”, “back” The agent walks in the 
directions that semanti-
cally correspond to the 
values defined for this 
attribute. In future, we 
plan to use the coordi-
nates on the screen to 
which the agent should 
walk. Thus using direc-
tion instead of the coor-
dinates is a temporarily 
solution.  

Beat 
     -Subtype 

“a” –“e” Waving spontaneous 
gestures with either one 
or both arms, used by the 
BEAT engine.  

Contrast 
     -Subtype 

“a” –“c” Waving spontaneous 
gestures with either one 
or both arms, used by the 
BEAT engine.NOT 
IMPLEMENTED YET 

Warning  An emblem gesture 
meaning danger : the 
elbow bent and the hand 
raised. 
 In future, the finger 
feature needs to be im-
plemented, i.e. the point-
ing finger only pointing 
upwards.  

 
In addition to the character action specification tags, ani-

mator controlling tags such as “Scene” are also defined. This 
tag informs the animator to switch scene settings while the 
scenario advances. Besides, the “PointingAt” tag is generated 
by a component which maps raw coordinate data to object 
names according to the information provided by motion capture 
device and scene changing messages. 

E. Character Animator 
During the workshop, the main improvement upon the 

character animator is the adoption of ARToolkit [12] to align 
the position of the character with the background images. 

The ARToolKit 2.65 video tracking libraries capture real 
time input from real camera and detect presence of the marker 
in the input picture. If marker is detected, real camera position 
and orientation relative to physical markers in real time are 
calculated. Calculated parameters are used for rendering a 
virtual object on physical marker.  

The main idea is to use ARToolkit libraries in one separate 
application that will recognize marker on the static picture 
(background picture). Marker will define the a position of the 
agent character on the picture. As output, this application will 
give calculated parameters that will be used in Visage player 
for rendering the agent character aligned with a same back-
ground, but without marker on the picture. In order to realize 
this, two pictures of the same background had to be taken, one 
with and another without marker. 

At first, some modifications to existing Simple demo appli-
cation, created by ARToolkit developers, had to be made. 
Simple application is programmed in Visual Studio 6.0 in C 



eNTERFACE’06, July 17th – August 11th, Dubrovnik, Croatia  ⎯ Final Project Report 
 

 

program language. Application is considering video stream in 
input and during continuous reading of sequential pictures from 
frames it is recognizing marker in each picture, if present. 
Markers on the picture are distinguished by pattern objects that 
are previously saved by another application, called Make pat-
tern. If the marker is recognized, parameters of the modelview 
matrix and projection matrix needed for drawing virtual object 
on a marker are calculated for every picture. After that, function 
for drawing virtual object on physical marker is called.  As 
result of Simple application, an output window where input 
picture align with virtual object on the marker, if present, is 
displayed.  

In order to read a static picture from specified location in-
stead of real time input from camera, eight functions that are 
receiving video input in ARToolkit are changed to return 
NULL value. Size of the display window that was calculated 
automatically by video functions is increased by decreasing 
zoom value while displaying main window. As size of a picture, 
a constant value 1250x 937 is set. For reading static pictures 
into unsigned bytes is used Sourceforge DevIL library.  

After these modifications several tests of a Simple applica-
tion with various .jpg pictures are done. Pictures are made by 
camera and are differed in the position and rotation of the 
marker. Marker is put on the floor with a different distance 
relative to the camera and also on top of the tripod. These 
pictures are then used as input value to Simple application in 
order to check percentage of detection. When application is 
started, specified picture is read into unsigned bytes. After that, 
read bytes are checked if specified marker (saved by Make 
pattern) is present. If marker is detected, as output of modified 
Simple application, static picture with virtual object on the 
marker is displayed. In the same time, calculated parameters are 
saved in .txt file.  

As a result of the tests, in output window only 20% of 
markers on various pictures are detected.  Results of these tests 
were not satisfying.  

In the all pictures that were detected in previous test, markers 
were put in the front of the camera on the floor and were 
lightened. Pictures with marker on the tripod had also good 
results, but they were not considered in later work because of 
the susceptibility of a marker position. If marker is slightly 
moved on the tripod, virtual object that is rendered on the 
picture is moved. Besides that, marker attached on the tripod 
was slightly rotated to the floor, so local coordinate system of a 
virtual object wasn’t aligned to the floor. Conclusion of this test 
is to use a bigger marker and to lay it on the floor without 
presence of any shadow on the marker. 

Further, different results of detection were also noticed in the 
two other things. In Simple application threshold value of an 
input picture can be changed manually. In some of the pictures 
that had bad results, marker was detected for changed threshold 
values. Second, new Make pattern application is made. Origi-
nal ARToolkit version of the Make pattern application was 
used to save marker pattern from picture captured by USB 
camera. New Make pattern application that is created can de-
tect and save presence of marker from a static picture. There-

fore, two different pattern objects for one marker can be used as 
input of Simple application. 

Input value of final application is set of picture’s names to be 
processed. After one picture is being read, presence of the 
marker on the picture is checked for different threshold values 
and both patterns made by Make Pattern application. This 
parameters are changed automatically in the application until 
marker on the picture is recognized. Output of the application is 
display window with static picture and virtual object and text 
file with parameters of the modelview matrix and projection 
matrix for each input picture. Output text file can be used by 
Visage player for positioning the agent character depending of 
the loaded background picture. 

Output values, parameters of final background image 
alignment application give very good results in alignment of 
the agent character to the background image in Visage Player. 
However, this result can be used for only one picture separately. 
Later improvements of this system can include continuous 
scene transitions. The main idea is to generate continuous 
scenes while agent is walking, e.g. walking around circular 
fountain.  In order to do realize this idea, detection of two 
different markers on the set of static pictures has to be included 
in Simple application. Set of static pictures has to be made 
while moving camera and continuously changing position of 
one marker after another, like character is walking. After this, 
output values of application will be two pairs of parameters for 
each picture. Later, these parameters can be used in Visage 
Player to calculate position of virtual character while moving 
from one picture to another. 

V. PROJECT OUTCOME AND CONCLUSION  
To the end of the workshop, we could not manage to achieve 

all of the planned project objectives. The individual non-verbal 
input components and Croatian speech contents are completed 
but are not integrated into the system. The final demonstration 
was done with a Dubrovnik guide agent running in two modes, 
English and Japanese modes. In Japanese mode, since there is a 
spontaneous gesture generating component, the agent’s pres-
entation looks more natural because the beating gestures per-
formed at the timing generated by CAST engine. On the other 
hand, in English mode, the agent performs scripted gestures 
only. 

However, this is our first time to apply the GECA framework 
to a larger and non-trivial testing application. We got some 
valuable experiments in component development and message 
specifications. Automatic character-background alignment 
application is developed and a suitable parameter set for dy-
namically configurable character animation is explored. 

REFERENCES 
[1] OpenAIR protocol, http://www.mindmakers.org/openair/airPage.jsp 
[2] NaturalPoint OptiTrack Flex 3, http://www.naturalpoint.com/optitrack/ 
[3] Julius Japanese speech recognition engine, 

http://julius.sourceforge.jp/en/julius.html 
[4] NEC/Tokin 3D motion sensor, 

http://www.nec-tokin.com/english/product/3d/index.html 



eNTERFACE’06, July 17th – August 11th, Dubrovnik, Croatia  ⎯ Final Project Report 
 

 

[5] Nakano, Y., Okamoto, M., Kawahara, D., Li Q., Nishida, T.: Converting 
Text into Agent Animations: Assigning Gestures to Text, in The Pro-
ceedings of The Human Language Technology Conference 
(HLT-NAACL04), 2004. 

[6] Program D, http://www.aitools.org/Program_D 
[7] AIML (Artificial Intelligence Markup Language), 

http://www.alicebot.org/ 
[8] Cassell, J., Vilhjalmsson, H., Bickmore, T.: BEAT: the Behavior Ex-

pression Animation Toolkit, in The Proceedings of SIGGRAPH '01, 
pp.477-486, 2001. 

[9] visage|SDK, visage technologies, 
http://www.visagetechnologies.com/index.html 

[10] TalkingJava SDK, CloudGarden.com, 
http://www.cloudgarden.com/index.html 

[11] Zoric, G., Pandzic, I.S.: A Real-time Language Independent Lip Syn-
chronization Method Using a Genetic Algorithm, in the proceeding of 
ICME 2005, 6-8 July 2005. 

[12] ARToolKit, http://artoolkit.sourceforge.net/ 
 
 
Principal investigator: 
Hung-Hsuan Huang graduated from the Computer Science Department of 
National Chen-Chi University, Taiwan in 1998 and obtained his master degree 
of computer science and information engineering from National Taiwan Uni-
versity, Taiwan in 2000. After a two-year military service where he was the 
political warfare director and the co-commander of an army company, he came 
to Japan. After the learning in a Japanese language school for one year, he 
entered the Ph.D. course of the Graduate School of Informatics of Kyoto 
University, Japan in 2003. His research interests include intelligent software 
agent, information visualization, photo management, gesture interface and is 
working on the generic ECA platform topic. 
 
Project Advisors: 
Prof. Toyoaki Nishida received the B.E., the M.E., and the Doctor of Engi-
neering degrees from Kyoto University in 1977, 1979, and 1984 respectively. In 
1980, he joined Department of Information Science, Kyoto University as an 
Assistant Professor. In 1988, he was promoted as an associate professor. In 
1993, he joined Graduate School of Information Science Nara Institute of 
Science and Technology as Professor. During 1998-2003, he led the Break-
through 21 Nishida Project, which is a five-year project sponsored by Ministry 
of Posts and Telecommunications, Japan. In 1999, he moved to the University 
of Tokyo as Professor.  In 2004, he moved to the current position at Kyoto 
University. His research area covers artificial intelligence in general. He has 
been working on natural language understanding, spatial reasoning and quali-
tative reasoning. His current research focusing on knowledge communication, 
including conversational knowledge process, knowledge sharing, and qualita-
tive reasoning.  
 
Asst. Prof. Igor S. Pandzic received his BSc degree in Electrical Engineering 
from the University of Zagreb in 1993, and MSc degrees from the Swiss Federal 
Institute of Technology (EPFL) and the University of Geneva in 1994 and 1995, 
respectively. He obtained his PhD from MIRALab, University of Geneva, 
Switzerland in 1998. In the same year he worked as a visiting scientist at AT&T 
Labs, USA. In 2001-2002 Igor was a visiting scientist in the Image Coding 
Group at the University of Linköping, Sweden. He is now an Assistant Pro-
fessor at the Department of Telecommunications, Faculty of Electrical Engi-
neering and Computing, University of Zagreb, Croatia. His main research 
interests are in the field of computer graphics and virtual environments, with 
particular focus on facial animation, embodied conversational agents, and their 
applications in networked and mobile environments. Igor also worked on 
networked collaborative virtual environments, computer generated film pro-
duction and parallel computing. Igor was one of the key contributors to the 
Facial Animation specification in the MPEG-4 International Standard for which 
he received an ISO Certificate of Appreciation in 2000.    
 
Asst. Prof. Yukiko Nakano received her bachelor degree in psychology from 
Tokyo Women’s Christian University, Japan in 1988, one master degree in 
educational psychology from the University of Tokyo and the other one in 
media arts and sciences from Massachusetts Institute of Technology, USA in 
1990 and 2002, respectively. She obtained her Ph.D. in information science and 
technology from the University of Tokyo, Japan in 2005. Yukiko was a re-
searcher of NTT Research Laboratories from 1990 to 2000 and was a sub-leader 
researcher of Research Institute of Science and Technology for Society from 

2002 to 2005. She moved to the Department of Computer, Information and 
Communication Sciences of Tokyo University of Agriculture and Technology 
as an associate professor in 2005. With her special interest in Embodied Con-
versational Agents (ECA), she has been studying human face-to-face commu-
nication in psychology and communication science, and creating multimodal 
conversational interfaces based on a model of human communication behav-
iors. 
 
Team Members: 
Kateryna Tarasenko graduated from the National Technical University of 
Ukraine “Kiev Polytechnic Institute” with a master degree in “Intelligence 
Systems for Information processing and Decision making”. She entered the 
Graduate School of Informatics of Kyoto University, Japan as a research 
student in 2005. Her research interests include: embodied conversational agents, 
simulation of non-verbal communication behaviors. 
 
Goranka Zoric received her master degree from the Faculty of Electrical 
Engineering and Computing, the University of Zagreb, Croatia in 2005 and is 
currently both a PhD student and a research associative there. Her main interest 
is in the field of facial animation and its application with Internet and mobile 
technologies and virtual environments with particular focus on automatic lip 
synchronization and gesturing of synthetic 3D avatars based only on the speech 
input. 
 
Vjekoslav Levacic graduated from the Faculty of Electrical Engineering and 
Computing of University of Zagreb, Croatia in 2005 and is currently a graduate 
student of the same university. His research interests include multimedia, 
software architecture, web design, image processing, HCI and mobile networks. 
(Vjekoslav will stay in Dubrovnik only for the first two weeks) 
 
Aleksandra Cerekovic is in her fifth and final year as an undergraduate student 
of the Faculty of Electrical Engineering and Computing of University of Zagreb, 
Croatia. She worked on the topic of lip synchronization for real-time speech 
recognition and synthesis. Besides that, she has the research interests on the 
topics of embodied conversational agent and virtual environment.  
 
Margus Treumuth received his bachelor and master degrees in computer 
science from University of Tartu, Estonia, in 2002 and 2004 respectively. He is 
now a PhD student in University of Tartu and has research interests in com-
putational linguistics and dialogue systems. (Margus will leave on 22/07) 
 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
    /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


