eNTERFACE’06, July 17" — August 11", Dubrovnik, Croatia — Final Project Report

An Agent Based Multicultural User Interface in a
Customer Service Application

Hung-Hsuan Huang', Aleksandra Cerekovic?, Kateryna Tarasenko', Viekoslav Levacic?, Goranka Zo-
ric’, Margus Treumuth®, Igor S. Pandzic®, Yukiko Nakano®, and Toyoaki Nishida'

'Graduate School of Informatics, Kyoto University, Japan, *Faculty of Electrical Engineering and
Computing, University of Zagreb, Croatia, *Department of Computer, Information and Communication
Sciences, Tokyo University of Agriculture & Technology, Japan, “Institute of Computer Science, Uni-

versity of Tartu, Estonia

Abstract—The advancement of traffic and computer networks
makes the world more and more internationalized and increases
the frequency of communications between people using different
languages and expressing different nonverbal behaviors. To im-
prove communication of embodied conversational agent (ECA)
systems with their human users, the importance of their capability
to cover the cultural differences emerged. Various excellent ECA
systems are developed and proposed previously, however, the
cross-culture communication issues are seldom addressed by
researchers. This project aims to explore the possibility of rapidly
building multicultural and multimodal ECA inter-faces for cus-
tomer service applications with a generic framework connecting
their functional blocks.

Index Terms— embodied conversational agent, distributed
system, blackboard, user interface, non-verbal interaction

I. PROJECT BACKGROUND

MBODIED conversational agents (ECA) are computer
generated humanlike characters that interact with human
users in face-to-face conversation and possess the follow-
ing abilities:
e Recognize and respond to verbal and nonverbal input
e Generate verbal and nonverbal output
e Perform conversational functions (e.g. utterance turn tak-
ing, feedback and repair mechanisms)
e Give signals that indicate the state of conversations as well
as to contribute new propositions
To achieve these features, system assemblies such as natural
language processing, sensor signal processing, verbal and
nonverbal behavior understanding, facial expression recogni-
tion, dialogue management, personality modeling, emotional
modeling, natural language generation, facial expression gen-
eration, gesture generation, and CG animator are required.
These functions actually involve multiple disciplines like A.L,
computer graphics, cognitive science, sociology, linguistics,
psychology, etc. They are in so broad range of research disci-
plines such that virtually no single research group can cover all

aspects of a fully operating ECA system. Moreover, the soft-
ware developed from individual research result is usually not
meant to cooperate with each other and is designed for different
purpose. Hence, if there is a common and generic backbone
framework that connects a set of reusable modulized ECA
software components, the rapid building of ECA systems will
become possible and the redundant efforts and resource uses of
ECA researches can be prevented. For these reasons, our group
is developing such a generic ECA platform and researching the
adequate communicative interfaces between ECA software
blocks. As a result, a basic system model is developed with a
prototype system and described in the next section.

On the other hand, the advancement of traffic and computer
networks makes the world more and more internationalized and
increases the frequency of communications between people
using different languages and expressing different nonverbal
behaviors. To improve the communication of ECA systems
with their human users, the importance of their capability to
cover the cultural differences emerged. Although various ex-
cellent agent interface systems are developed and proposed
previously, the cross-culture communication issues are seldom
addressed by researchers.

II. PROJECT OBJECTIVES

To explore the issues that may occur in multicultural com-
munication, especially nonverbal communicative behaviors
performed spontaneously by humans; we propose this project
with the objective to develop a customer service application
with an ECA interface which serves human users from different
cultures based on the generic ECA framework. Based on the
discussion among the team members prior to the workshop, the
target application is decided to be a tour guide agent of Du-
brovnik city where is specified as a UNESCO Worlds Heritage.
Since most of the team members come from Japan and Croatia,
it is most convenient to gather first-hand Japanese and Croatian
cultural information where the differences are supposed to be
fairly obvious. A guide agent dynamically changes its behav-
iors either in Japanese way or in Croatian way according to its

eNTERFACE’06, July 17" — August 11", Dubrovnik, Croatia — Final Project Report

CO1.Motion||C02.Data| [£03:03Panes4 | co4 Motion C06.AIML| [co7.AIML| €09 English) C10English| | 44 anim || c12.visage
Gl Speech e IC05.CAST| (Japanese) | (English) CO8.BEAT| Speech Speech Catego! Player
G ove Recoanition P 9 Recoanizer||Svnthesizer. gory Y
Data Data SAPI5 Data JSAPI JSAPI
Acquire Acquire Wrapper Acquire Ot WitEppmer || Wi | e Wrapper Wrapper Wrapper | Wrapper
4} {} {} i i 4} {} {} {} {} i i {} i iGECAML
C++
C# AIR Plu Java AIR Plu
9 9 AIR Plug

I
|
1
1
\

ECA Dedicated AIR Server

\
|
1 Black Black
I (Board 1| [Board 2
|
7

GECA Platform

Fig. 1 The conceptual diagram of GECA framework and the configuration of the eNTERFACE06

agent

visitor was thus suggested. On the other hand, because of the

lack of good-quality speech synthesizer/recognizer for Croatian,

the guide agent will speak and listen to English in its Croatian
mode.

In this system, the agent mediates the site seeing information
of Dubrovnik to its visitors via verbal and non-verbal interac-
tions. An example scenario is: when a visitor comes to the
system, the system recognizes the visitor as a Japanese or
Croatian from the combination of the speech recognizer’s result
and the non-verbal behaviors of the visitor such as bowing in
greeting in Japanese culture. The agent then switches to its
Japanese mode, that is, speaks Japanese and behaves like a
Japanese to accept and answer the queries from the visitor
while performing culture-dependent gestures according to
predefined scenarios in that session. At the same time, the
visitor can interact with the agent not only by natural language
speaking but also by non-verbal behaviors such as pointing to
an object on the background image or raising his (her) hand to
indicate that he (she) wants to ask a question. Besides, to reduce
the system complexity and prevent the drawbacks come from
an ill-implemented 3D environment, in the prototype system
that is going to be implemented during eNTERFACE’06, scene
transitions are approximated by camerawork and the changes of
realistic background photos instead of building a full 3D virtual
world.

III. GENERIC ECA FRAMEWORK

To connect many heterogeneous functional components to
an integral virtual human, the consistency of all communication
channels and the timing synchronization of all components will
be very important issues. Also, to handle nonverbal inputs from
humans, the capability to handle streaming data from sensors in
real-time is indispensable. Our platform is built upon a routing
and communication protocol of cooperating A.l. programs,
OpenAlIR [1]. The platform mediates the information exchange
of ECA software components with XML messages via shared
memory mechanism (blackboard or white boards in
OpenAlIR’s context) and will have the following advantages:

Distributed computing model over network eases the in-

tegration of legacy systems

Communication via XML messages eliminates the de-

pendency on operating systems and programming lan-

guages

e Simple protocol using light weight messages reduces the
computing and network traffic overhead

e Prioritized messages make quality of service control pos-
sible and facilitates real-time event processing (not im-
plemented yet)

e Explicit timing management mechanism (partially im-
plemented)

e Support discrete messages and streaming sensor data at the
same time (partially implemented)

e The use of shared backbone blackboards flatten the com-
ponent hierarchy, shorten the decision making path and
can realize reflexive behaviors

e Possible to use multiple logically isolated blackboards
rather than traditional single blackboard (not implemented
yet)

e Components can communicate with each other directly or
via blackboard(s) (not implemented yet)

e Easy to switch or replace components which have the same
function if they understand and generate messages in the
same type

Figure 1 shows the conceptual diagram of the GECA
framework and the configuration of the planed Dubrovnik tour
guide agent. Based on this framework, we are specifying an

XML based high-level protocol for the data exchanges between

the components plugged into the GECA platform. Every

GECA message belongs to a message type, for example, “in-

put.speech.text”, “output.action.speak”, etc. Each message

type has a specified set of XML elements and attributes, for
example, “intensity”, “duration”, “start time”, ectc. The
message flow works like the following scenario upon the
platform, when a component starts; it registers its contact in-
formation (unique name, IP address, etc) to CNS (Central

Naming Service) component and subscribes its interested

message type(s) to the AIRCentral component. Then the mes-

eNTERFACE’06, July 17" — August 11", Dubrovnik, Croatia — Final Project Report

sages in those types will be sent to the component from the
specified blackboard (or a whiteboard in OpenAIR’s termi-
nology) which behaves like a shared memory between the
components when some other component published the mes-
sages. That component then processes the data it got and pub-
lishes its own output to the shared blackboard in certain mes-
sage type.

By utilizing the communicative functions provided by the
Air Plug libraries (currently we have developed the C#, C++
version libraries and a customized Java reference implementa-
tion from mindmakers.org) which are a part of the platform, an
ECA system builder needs to develop a small piece program
called a wrapper in order to handle and convert the input/output
of an existing software component to be GECAML (Generic
ECA Markup Language) compliant. After doing this, the het-
erogeneous nature of components that provide the same capa-
bility (for example, both of a MS SAPI4 TTS and a JSAPI TTS
provide the same capability of the agent, i.e. to speak out from
text) can be hided and behave identically to the other software
components.

IV. DUBROVNIK TOUR GUIDE AGENT

During the eNTERFACEQ6 project’s four-week period, the
participants of this project cooperated to develop the tour guide
agent described in section II. In this section, we discuss the
GECA software components that are used in this project and
the main tasks that were dealt during the project period.

A. Software Component Configuration

This agent was planned with the component configuration
depicted in Figure 1. The follows are the brief descriptions of
those software components.

CO01. Motion capture component. This component utilizes a
simple motion capture device [2] using IR technology to
roughly approximate a predefined set of human visitor’s
non-verbal behaviors.
Data glove component. This component acquires data
from a data glove hardware device and reports recognized
movements of the visitor’s fingers to the other compo-
nents.
CO03. Japanese speech recognition component. This component
is a wrapped SAPI-5 Japanese recognition engine, Julius
[3] and has been implemented.
C04. Motion sensor component. This component acquires data
from a 3 dimensional acceleration sensor [4] which is
attached on the visitor’s head to detect head shaking and
nod movements. This component has been implemented.
Japanese spontaneous gesture generating component.
This component is a wrapper of CAST [5] engine which
generates the type and timing information of spontaneous
gestures from Japanese utterance input string. This
component has been implemented.
AIML interpreter components for Japanese. This com-
ponent wraps a Java implementation [6] of AIML [7]
interpreter. It reads one or more AIML scripts which
specify the agent’s verbal and nonverbal responses to
certain input behaviors from the visitors. Therefore, this

C02.

CO05.

C06.

CO07.

CO08.

C09.

C10.

Cl11.

Cl12.

Cl13.

component behaves like the brain of the agent and thus
the current agent shows only reflexive behaviors with
some context referencing capability comes with AIML
and has no internal state. Besides, because the original
AIML does not accept customized tags, a set of tags
specifying visitor’s non-verbal inputs and agent’s
non-verbal outputs must be encoded into the script. The
wrapper of this component has been implemented but the
scenario script(s) has to been defined during the eN-
TERFACE workshop.

AIML interpreter components for English. The same as
above except this component handles English inputs /
outputs.

English spontaneous gesture generating component. This
component is a wrapper of BEAT [8] which generates the
type and timing information of spontaneous gestures
from English utterance input string. This component has
not been implemented yet.

English speech recognition component. This component
wraps a speech recognition engine to recognize English
speaking of the visitor and from predefined grammar rule
and sends the recognized result as a text string to the
subscribed components. This component has not been
completed yet.

English Text-To-Speech component. This component
wraps an English Text-To-Speech (TTS) engine to gen-
erate the voice output of the agent and visime events to
drive the character animator to move the agent’s lips. This
component has not been completed yet.

Animation category component. This component is a
database storing the number values of MPEG4 FBA pa-
rameters of a predefined set of animation / action to drive
the character animation in real-time. This component has
not been implemented yet.

Character animation player component. This component
is a wrapped character animation player which is im-
plemented in visage|SDK [9]. It accepts driving event
messages from the animation category and speech syn-
thesizer component and performs the specified character
animation.

Central controlling component dedicated to ECA. This
component is one part of the OpenAlR server and handles
synchronization among the components, ensures integrity
of all output modals, selects the actions to perform if there
is some contradiction.A conclusion section is not re-
quired. Although a conclusion may review the main
points of the paper, do not replicate the abstract as the
conclusion. A conclusion might elaborate on the impor-
tance of the work or suggest applications and extensions.

eNTERFACE’06, July 17" — August 11", Dubrovnik, Croatia — Final Project Report

Recorded Voice wave file / lip sync event
Scenario script /' Voice
Croatian -
SR. Croatian
AIML Won specifications
Ja%a;ese / MPEG4 FBA Parameters
\ Animation | ———» | Character
Database Animator
Data | — Input
Glove Integrator / Animation specifications
: i . Spontaneous
Motion / \ Scenario script Gosture
Sensor / Generator
Japanese
Motion AIML
Capture

Fig. 2 The data flow of the Dubrovnik tour guide agent

However, during the development period, there were some
modifications made to the original plan. Because the venue of
the workshop is in Croatia, we decided to use pre-recorded
Croatian voice instead of English TTS and use English speech
recognition engine to recognize a limited range of Croatian
vocabularies. Figure 2 shows the data flow among the com-
ponents of the actually built Dubrovnik tour guide agent. The
speech recognition component and sensor components gather
and recognize the verbal and nonverbal inputs from the human
user and send the results to the AIML component. The inputs
from different modals are combined by the wrapper of AIML
component and are matched with predefined scenario AIML
scripts. The AIML then sends the matched response which may
include utterance and action tags to speech synthesizer and
animation category component. Depends on the design of the
spontaneous gesture generating component, the speech syn-
thesizer component may output the generated voice by itself
and send the visime events to the animator to drive the agent’s
lips or leave these jobs to the other components. In either way,
timing information is sent to the spontaneous gesture generator.
The spontaneous gesture generator inserts action tags into the
utterance according to the timing information from the speech
synthesizer and its natural language tagging companion. The
animation category listens to action queries from the sponta-
neous gesture generating component or the AIML component
and sends FBA (Facial Body Animation) parameters to drive
the character animator. The character animator listens to action
and visime events and play them in real-time. Some character
animators (e.g. visage) may also provide TTS support; in that
case, it also listens to the utterance output of the spontaneous
gesture generating component. Furthermore, shortcuts between
the sensor components and the animator that bypass the pipe-
line are allowed and make reflexive behaviors of the agent
possible, and this is one of the strengths of this framework over
the other ECA architectures.

B. Non-verbal input recognition

To provide an immersive environment for the user to interact
with the tour guide agent, a LCD projector with
tilt-compensation function is used to project a large enough
image of the agent on the screen. The user then stands in front
of the screen and interact with the guide agent as (s)he is really
in the virtual Dubrovnik space.

In the non-verbal input recognition issue, the aim is to detect
the following behaviors from the user:

o Get the agent’s attention

Point to the interested objects shown on the display

Show the willing to ask a question

Interrupt the agent’s utterance

Shake head and nod to express positive and negative an-

swers
Because of the nature of the eNTERFACE workshop, only
small size and portable sensor devices are adopted in this pro-
ject. These non-verbal behaviors are recognized by using the
data from data gloves, infrared camera, and acceleration sen-
sors.

Nissho Electronics Super Glove

This data glove is a simple wearable input device which user
can put on his right hand to detect finger curvature. Ten sensors,
two for each finger, are used to detect how fingers are bent.
Prior to first use, user must calibrate the glove's sensor readings
by putting the fingers into three different positions. Data glove
is connected with a cable to the control box which is a power
input device and a processing unit of the data collected from the
sensors. Control box can be connected to the PC with a serial
cable and a serial port reader can be used to read the glove data.
Data from the glove is represented with thirty ASCII characters.
Three ASCII characters are assigned to each sensor where
"000" means that a finger is straight and "900" means that it is
fully curved. In a program we developed, we assign a threshold
value of when finger becomes bent, which means that we detect
only two states of the finger. By mapping finger shapes into the
gestures it is easy to detect different kinds of positions like

eNTERFACE’06, July 17" — August 11", Dubrovnik, Croatia — Final Project Report

pointing or five fingers straight.
NaturalPoint OptiTrack FLEX3

Infrared reflecting materials are used to help detecting the
approximate pointing direction of the user's right hand. Mate-
rial in a shape of a strap is put around the wrist of the right hand
and its spatial coordinates are detected by the OptiTrack in-
frared camera and projected into the 2D plane.

Averaged
pointing
coordinates

Upper left corner
point where the user
points.

Camera screen
capture area

Fig. 3 The calibration of project 2D coordinates

During initial use, system must be calibrated. To calibrate the
system, user stands in front of the projection screen and a
camera and follows the software instructions to point to the
each corner of the projection screen. Projected coordinates of
the upper corners are bent inward and give overall projection
shape resembling the trapezoid because camera stands closer to
the floor. The concept is shown in figure 3. That inevitably
leads to the curved projection of the hand movement. Never-
theless, it is assumed that interesting scenario objects will have
perceivable size compared to the projection screen and that
approximate pointing coordinates should be detectable.

Grid is set as 2 X 2
array]

/

Poiont at cell [0,0]

Fig. 4 Mapping between raw data and application coordi-
nates

After the trapezoid's corner points are calculated we ap-
proximate the area of hand movement with a rectangle by av-
eraging trapezoid's neighbor values. The projection screen is
divided into the grid of arbitrary size. When user is pointing to
the screen, his pointing coordinates are inside one of the grid's
cell. Interesting scenario objects are mapped to distinct cells
and therefore pointing at scenario object can be easily detected.
This concept is shown in figure 4.

Camera's API gives us the information of where the detected
object's center of mass is. If multiple infrared sources exist,
more than one center of mass will be detected. This can espe-
cially occur when marker, due to the various reasons, has in-
terruption in continuity of its area. To remove that problem, we
use K-Means algorithm to group close centers. Software also

removes all centers which show spatial stability in time. Such
an example is a LCD projector which is put in front of the
camera and disturbs the detection by constantly emitting the
infrared light.

Software detects hand stability and waving. To detect if user
holds his hand in a stable position, we need a time buffer of
marker coordinates. Buffer size is determined by the camera's
frame rate. After each frame algorithm calculates the central
point of all points in a buffer and distance from that central
point to each other point in a buffer. If all distances are below
the predefined percent of screen width, hand stability is alerted.

Swing is defined as a hand movement from one point to an-
other, before hand changes movement direction. Software
detects waving which goes from the elbow to the forearm,
where the marker's waving is visible on the screen and recog-
nizable by the system. Waving pattern is characterized with two
specific features. First one is that a length of each swing is
approximately the same as a previous one. Also, we tend to
wave in a constant speed without variations in a hand move-
ment. Therefore, gradient of a hand movement and movement
length seem like a suitable features to detect the waving. To
detect the hand movement, buffer is filled with the waving data.
Each change in direction of the marker that is larger than some
threshold is detected as a new swing. Pivot element, first ele-
ment in a buffer, is taken as a reference point to calculate if
waving is occurring. By comparing other waving elements
found in a buffer with a pivot element, specifically their gra-
dient, length and number of swings, we may detect and sig-
nalize the waving.

NEC/Tokin 3D Motion Sensor

It is a sensor that can detect the change of acceleration in
three dimensions. This small-size sensor is attached on the top
of the headset that is usually used for gathering speech inputs,
and the data from it is used to detect the movement of the user’s
head. A component that detects two types of head movements,
nodding and shaking was developed. It generates output mes-
sage to represent positive (nodding) and negative (shaking)
verbal answers. Therefore, the user can nod instead of saying
“yes” or shake his (her) head instead of saying “no.”

Data glove and hand movement detection programs work as
a separate .NET applications. Each program has an OpenAir
plug implementation, sending the data which InputManager
component receives and combines into the new output (see
Table 1). InputManager component acts as a fusion component
of the different input modalities, and is made as a simple state
machine. It sends the output only when new gesture is detected.

eNTERFACE’06, July 17" — August 11", Dubrovnik, Croatia — Final Project Report

TABLE 1

THE USE OF SENSOR DATA

Component finger_shape
name
Outputs Type Content Description
in- FiveUps Five fingers
put.shape.fin straight
gers Pointing 2 finger straight
Victory 2,3 fingers straight
Unknown Any other combi-
nation
Component wrist_position
name
Outputs Type Content Description
in- UNKNOWNI[X, Y
put.position. or OUTSIDE],
wrist where the XY is
the cell where the
marker is detected
WAVING_DETE
CTED[X)Y |
OUTSIDE]
HAND_STABLE[
X Y| OUTSIDE]
CALIBRATION[c¢ Sends the message
alibration mes- in which status the
sage] calibration is
Component input_manager
name
Outputs Type Content Description
in- POINTING[X,Y|O Pointing +
put.manager. UTSIDE] HAND_STABLE
fusion + coordinates
WAVING FiveUps +
WAVING_DETE
CTED
ATTENTION FiveUps or Vic-
tory +
HAND STABLE
UNKNOWN

C. Croatian Speech Input / Output

As there is no Croatian speech recognizer it is decided that
we will use English speech recognizer to recognize Croatian.
Therefore simple rule grammar had to be created to recognize
some words according to the agent scenario. The grammar for
Croatian is defined by using English alphabet to approximate
the pronunciation of Croatian even those words do not exist in
English. CloudGarden [10] library is used to access SAPIS
compliant Speech-Recognition engine by standard Java Speech
SAPI.

It was possible to create grammar according to the scenario
to make English speech recognizer to recognize Croatian. We
have made such grammar to recognize both only Croatian
words and whole sentences. Both ways were quiet successful.
However, several problems came out. Some Croatian words
were impossible to write with English alphabet, therefore it was
better to avoid them and use some other words instead. Also, if
grammar contained several very similar words, they were
sometimes mixed by recognizer, so it is better to choose words
that are not so similar (since scenario was not that strict this was
possible). And the last thing, although the recognition worked
with all tested subjects, recognition with some was slightly

better.

Once we had Croatian scenario, a native Croatian speaker
has recorded speech the agent was supposed to say in certain
situation in the noise free room. By applying a lip sync appli-
cation we have [11], which takes speech as input and gives
animation (of the lips) as output, we have created animation
from the prepared speech files.

Our automatic lip sync system determines the motion of the
mouth and tongue during the speech by speech signal analysis.
Neural networks are used to classify the speech into a sequence
of visemes (visual representatives of phonemes). In order to
obtain training data for the NN, a training set with visemes was
collected. The speech is first preprocessed. Input in NNs are
MFCCs calculated from training data and output is different
viseme classes. When correct viseme is chosen, it can be sent to
animated face model. MPEG-4 standard is used for generating
facial animation since facial animation can be generated for any
parameterized face model if the visemes are known. The
method is implemented in C++. The program reads speech
from pre-recorded audio files and continuously performs
spectral analysis of the speech. Suitable visemes are shown on
the screen or saved in the FBA file.

At the end, we had a pair of speech-animation files for every
situation according to the scenario.

D. Action Animation Database

By an animated action we mean a set of Face and Body
animation parameters displayed within the same time interval
to produce a visual agent action, such as nod or gesture. The
queries for animated actions for the agent are stored in the
AIML script. A single database query corresponds to an AIML
category consisting of a pattern (typically, a human’s action)
and a template, the agent’s reaction to the pattern. The de-
scription of an animation, which is to be started simultaneously
with a particular part of the agent’s utterance, is incorporated in
the <template> tag using the “[* and ”]” characters.

Below is a simple example of an AIML category with
non-verbal input/output descriptions:

<category>

<pattern>What is this

[PointingAt Object=“monastery”]
</pattern><template>This is the big Onofrio’s Fountain
[Action Type="pointing" SubType="Null" Duration="2300"
Intensity="0" X="0" Y="0" Z="0" Direction="rightUp"
ActivationFunction="sinusoidal"/] built in 15th
century. The Fountain is a part of the town's water
supply system which Onofrio managed to create by
bringing the water from the spring located 20 km away
from town.</template></category>

Here, the non-verbal action “pointing” of the agent character
is described. Its duration is specified by opening tag and closing
tags that enclose a segment of an utterance and thus the actual
value depends on the TTS (Text-To-Speech) synthesizer if it
supports prior phoneme timing output or absolute values in
milliseconds. The attribute SubType has the value of “Null”,
as there are no possible subtypes defined for it. The “Intensity”
attribute is to have integer values, with “0” value meaning that

eNTERFACE’06, July 17" — August 11", Dubrovnik, Croatia — Final Project Report

the intensity is not specified for the action in question. Other
actions, for which the attribute “intensity” has sense, do have
an intensity scale specified. For example, to distinguish be-
tween a slight bow used while greeting in European countries
from the deep Japanese salutation bow, we introduce a scale of
values for the “bow” action.

Further, we envisage the use the coordinates (“X”, “Y”, “Z”)
integer-valued attributes in the future. The meaning of these
coordinates will be dependent on the action. For example, for
the “pointing” action such this triad would mean the position on
the background screen where the agent is supposed to point. At
the moment the alternate attribute “Direction” is used.

The “ActivationFunction” attribute stands for the dynamics
of the action. Possible values are “linear”, which uses a linear
function to activate the corresponding MPEG4 Face and Body
Animation parameters (FAPs), “sinusoidal’, which uses
trigonometric functions to activate the FAPs, and “oscillation”
function, which is used for the repeated actions, such as “Nod-
ding” or “HeadShaking”. In addition to these attributes, the
attribute “sync” with possible values “PauseSpeak”, “Be-
foreNext”, “WithNext” specifies the synchronization between
non-verbal actions and speech synthesizer.

The action “pointing” is an invocation of one character ac-
tion with the name “pointing” which is stored in a high-level
action database. The database is currently implemented as one
part of the visage animator and stores low-level MPEG4 FBA
parameter specifications as well as run-time configurable pa-
rameters for high-level action invocations.

Visage operates with FBAPs — a large set face and body
animation parameters, specified by MPEG4. FBAPs are di-
vided into FAPs (Face animation parameters) and BAPs (body
animation parameters). The BAP parameters are the angles of
rotation of body joints connecting different body parts, such as
toe, ankle, knee, hip, spine joints, shoulder, clavicle, elbow,
wrist, and the hand fingers. There are 64 low-level FAPs,
which are closely related to muscle actions and represent a
complete set of basic facial actions, and two high-level FAPs
(expression and viseme).

Example: by analyzing the videos, we found that for the
pointing gesture can be animated by manipulating such FAPs
as head_yaw and head_pitch, and the following BAPs:
|_shoulder_flexion, |_shoulder_abduct,
|_shoulder_twisting, |_elbow_flexion. We ran a series of
experiments to set the values of these parameters.

The analysis of videos to create gestures was pretty difficult
because we did not use any tool that would translate a gesture in
to a set of FBAPs. Without it took us from 5 to 30 experiments,
depending on the complexity of the action, to adjust the pa-
rameters for an action. Needless to say, that such approach is
rather time-consuming.

Then, for the most of the actions implemented in our system,
we divide the duration of it into 3 states: attack, sustain and
decay. For each of the intervals, depending on the activation
function of the action in question, we define how the parameter
value changes as a function of time. For example, in case of
sinusoidal function (as is with the pointing gesture), in the

attack phase, the value of the parameters changes as a sinu-
soidal (increasing function) function of time, whereas in the
sustain (i.e. peak) phase it changes as a constant. Finally, in the
decay phase the corresponding function is cosinusoidal (de-
creasing). The character animation created for this application
is listed in Table 2.
Cultural differences through the non-verbal behavior of
the agent

We observed analyzed non-verbal behaviors of Japanese
tour guides and took videos. As a result, we tried to implement
these features in our agent. Also, some very typical emblem
Japanese gestures, that are not inherent to the European culture,
were implemented. For example, the so-called “handsCrossed”
gesture. This gesture seems to be pretty unique, and normally
draws attention of Western people who first come to Japan and
are used to head shaking or simply verbal expression of pro-
hibition (See Figure 5 and Figure 6). In Japanese culture, to
show that something is prohibited, people tend to cross their
hands before the chest. Sometimes, this action is accompanied
with head shaking. Similarly, our agent uses this gesture when
prohibiting in the Japanese mode, in contrast to the European
mode, where only head shaking is envisaged.

Fig. 5 A Japanese emblem gesture to show prohibition

Fig. 6 Another example is the “Negation” gesture in the Japanese mode:
waving with a hand while the arm is extended. In Japan, the negation is
expressed by shaking one’s upright hand near one’s mouth with two
thumbs closer to one’s face. Sometimes shaking head sideways is also
added. When asking to wait, Japanese people usually show the palm of
one hand to another person. At times, both hand maybe used.

eNTERFACE’06, July 17" — August 11", Dubrovnik, Croatia — Final Project Report

TABLE 2 -Subtype facial expression “joy”
CHARACTER ACTION ANIMATION CREATED FOR THE DUBROVNIK GUIDE defined in the Class
APPLICATION SimpleFacialExpression
Gesture/attributes Values Meaning Walk “right”, “left”, “back” The agent walks in the
Pointing: The agent points in the -Direction directions that semanti-
- Direction left, leftUp, right, directions that semanti- cally correspond to the
rightUp, rightFor- cally correspond to the values defined for this
ward, leftForward, values defined for this attribute. In future, we
backH, backE attribute. In future, we plan to use the coordi-
plan to use the coordi- nates on the screen to
nates on the screen to which the agent should
which the agent should walk. Thus using direc-
point. Thus using direc- tion instead of the coor-
tion instead of the coor- dinates is a temporarily
dinates is a temporarily solution.
solution. “backE” and Beat “a” —e” Waving spontaneous
“backH” values represent -Subtype gestures with either one
variations of gestures or both arms, used by the
with the elbow bent. BEAT engine.
Bow 1-3 1 corresponds to a shal- Contrast “a” —“c” Waving spontaneous
-Intensity low bow, using only head; -Subtype gestures with either one
2- or both arms, used by the
is a deeper bow, very BEAT engine.NOT
frequently used by Japa- IMPLEMENTED YET
nese people in a daily Warning An emblem gesture
conversations, meaning danger : the
3-corresponds to a very elbow bent and the hand
polite bow, showing a raised.
high respect to the listener In future, the finger
Invite Croatian, Japanese The “invite” action of the feature needs to be im-
-Subtype “Croatian” subtype plemented, i.e. the point-
is waving upwards and ing finger only pointing
then backwards with the upwards.
left hand, a somewhat
ﬂig:ilﬁz e?ﬁiﬁg‘?esﬁz In addition to the character action specification tags, ani-
action of the subtype mator controlling tags such as “Scene” are also defined. This
f‘JaPlanese” (}135 not been tag informs the animator to switch scene settings while the
1mplemented yet. : : “« Fn ” :
HandsCrossed This is an emblem Japa. | Scenario advances. B§s1des, the POIntlngAt tag is genergted
nese gesture, meaning DY @ component which maps raw coordinate data to object
that something is not names according to the information provided by motion capture
allowed. The hands are ; ;
eroseed i front of the device and scene changing messages.
lower part of the chest E. Character Animator
Nodding The action meaning both . L
in Croatian and Japanese During the workshop, the main improvement upon the
agreement, consent. character animator is the adoption of ARToolkit [12] to align
ShakeHead The action meaning both 4,6 osition of the character with the background images.
in Croatian and Japanese . . . N .
negation or disapproval. The ARToolKit 2.65 video tracking libraries capture real
Extend [at the moment, “ex- This action means right time input from real camera and detect presence of the marker
tend” means extend- arm extended with the jp the input picture. If marker is detected, real camera position
ing the right arm. In palm open and oriented
the future we might upwards. The meaning in and orientation relative to physical markers in real time are
need extending the the Japanese culture is calculated. Calculated parameters are used for rendering a
left arm as well. Thus, “wait please” virtual object on physical marker.
the subtype attribute The main idea is to use ARToolkit libraries in one separate
might be introduced o A R X X
with the “left/right” as application that will recognize marker on the static picture
possible values.] (background picture). Marker will define the a position of the
Wave [at the moment, This action means oscil- 5900t character on the picture. As output, this application will
“wave” means waving lating right hand waving. - . . .
with the right hand. In ~ Used in combination with ~ £1V€ calculated parameters that will be used in Visage player
the future we might the “extend” action as for rendering the agent character aligned with a same back-
need waving with the - part of the Japanese ground, but without marker on the picture. In order to realize
Eit :jgggz Xﬂbj&us %;Sitsuir Se N oﬁzzl?g No. this, two pictures of the same background had to be taken, one
mlght be introduced Wlth and anOther Wlthout mal‘kel‘.
with the “left/right” as At first, some modifications to existing Simple demo appli-
. possible valucs.] . cation, created by ARToolkit developers, had to be made.
Expression “smile” This value corresponds

Simple application is programmed in Visual Studio 6.0 in C

eNTERFACE’06, July 17" — August 11", Dubrovnik, Croatia — Final Project Report

program language. Application is considering video stream in
input and during continuous reading of sequential pictures from
frames it is recognizing marker in each picture, if present.
Markers on the picture are distinguished by pattern objects that
are previously saved by another application, called Make pat-
tern. If the marker is recognized, parameters of the modelview
matrix and projection matrix needed for drawing virtual object
on a marker are calculated for every picture. After that, function
for drawing virtual object on physical marker is called. As
result of Simple application, an output window where input
picture align with virtual object on the marker, if present, is
displayed.

In order to read a static picture from specified location in-
stead of real time input from camera, eight functions that are
receiving video input in ARToolkit are changed to return
NULL value. Size of the display window that was calculated
automatically by video functions is increased by decreasing
zoom value while displaying main window. As size of a picture,
a constant value 1250x 937 is set. For reading static pictures
into unsigned bytes is used Sourceforge DevIL library.

After these modifications several tests of a Simple applica-
tion with various .jpg pictures are done. Pictures are made by
camera and are differed in the position and rotation of the
marker. Marker is put on the floor with a different distance
relative to the camera and also on top of the tripod. These
pictures are then used as input value to Simple application in
order to check percentage of detection. When application is
started, specified picture is read into unsigned bytes. After that,
read bytes are checked if specified marker (saved by Make
pattern) is present. If marker is detected, as output of modified
Simple application, static picture with virtual object on the
marker is displayed. In the same time, calculated parameters are
saved in .txt file.

As a result of the tests, in output window only 20% of
markers on various pictures are detected. Results of these tests
were not satisfying.

In the all pictures that were detected in previous test, markers
were put in the front of the camera on the floor and were
lightened. Pictures with marker on the tripod had also good
results, but they were not considered in later work because of
the susceptibility of a marker position. If marker is slightly
moved on the tripod, virtual object that is rendered on the
picture is moved. Besides that, marker attached on the tripod
was slightly rotated to the floor, so local coordinate system of a
virtual object wasn’t aligned to the floor. Conclusion of this test
is to use a bigger marker and to lay it on the floor without
presence of any shadow on the marker.

Further, different results of detection were also noticed in the
two other things. In Simple application threshold value of an
input picture can be changed manually. In some of the pictures
that had bad results, marker was detected for changed threshold
values. Second, new Make pattern application is made. Origi-
nal ARToolkit version of the Make pattern application was
used to save marker pattern from picture captured by USB
camera. New Make pattern application that is created can de-
tect and save presence of marker from a static picture. There-

fore, two different pattern objects for one marker can be used as
input of Simple application.

Input value of final application is set of picture’s names to be
processed. After one picture is being read, presence of the
marker on the picture is checked for different threshold values
and both patterns made by Make Pattern application. This
parameters are changed automatically in the application until
marker on the picture is recognized. Output of the application is
display window with static picture and virtual object and text
file with parameters of the modelview matrix and projection
matrix for each input picture. Output text file can be used by
Visage player for positioning the agent character depending of
the loaded background picture.

Output values, parameters of final background image
alignment application give very good results in alignment of
the agent character to the background image in Visage Player.
However, this result can be used for only one picture separately.
Later improvements of this system can include continuous
scene transitions. The main idea is to generate continuous
scenes while agent is walking, e.g. walking around circular
fountain. In order to do realize this idea, detection of two
different markers on the set of static pictures has to be included
in Simple application. Set of static pictures has to be made
while moving camera and continuously changing position of
one marker after another, like character is walking. After this,
output values of application will be two pairs of parameters for
each picture. Later, these parameters can be used in Visage
Player to calculate position of virtual character while moving
from one picture to another.

V. PROJECT OUTCOME AND CONCLUSION

To the end of the workshop, we could not manage to achieve
all of the planned project objectives. The individual non-verbal
input components and Croatian speech contents are completed
but are not integrated into the system. The final demonstration
was done with a Dubrovnik guide agent running in two modes,
English and Japanese modes. In Japanese mode, since there is a
spontaneous gesture generating component, the agent’s pres-
entation looks more natural because the beating gestures per-
formed at the timing generated by CAST engine. On the other
hand, in English mode, the agent performs scripted gestures
only.

However, this is our first time to apply the GECA framework
to a larger and non-trivial testing application. We got some
valuable experiments in component development and message
specifications. Automatic character-background alignment
application is developed and a suitable parameter set for dy-
namically configurable character animation is explored.

REFERENCES

[1] OpenAlR protocol, http://www.mindmakers.org/openair/airPage.jsp

[2] NaturalPoint OptiTrack Flex 3, http://www.naturalpoint.com/optitrack/

[3] Julius Japanese speech recognition engine,
http://julius.sourceforge.jp/en/julius.html

[4] NEC/Tokin 3D motion sensor,
http://www.nec-tokin.com/english/product/3d/index.html

eNTERFACE’06, July 17" — August 11", Dubrovnik, Croatia — Final Project Report

[5] Nakano, Y., Okamoto, M., Kawahara, D., Li Q., Nishida, T.: Converting
Text into Agent Animations: Assigning Gestures to Text, in The Pro-
ceedings of The Human Language Technology Conference
(HLT-NAACLO04), 2004.

[6] Program D, http://www.aitools.org/Program_D

[71 AIML (Artificial Intelligence Markup Language),
http://www.alicebot.org/

[8] Cassell, J., Vilhjalmsson, H., Bickmore, T.: BEAT: the Behavior Ex-
pression Animation Toolkit, in The Proceedings of SIGGRAPH '01,
pp.477-486, 2001.

[9] visage|SDK, visage technologies,
http://www.visagetechnologies.com/index.html

[10] TalkingJava SDK, CloudGarden.com,
http://www.cloudgarden.com/index.html

[11] Zoric, G., Pandzic, I.S.: A Real-time Language Independent Lip Syn-
chronization Method Using a Genetic Algorithm, in the proceeding of
ICME 2005, 6-8 July 2005.

[12] ARToolKit, http://artoolkit.sourceforge.net/

Principal investigator:

Hung-Hsuan Huang graduated from the Computer Science Department of
National Chen-Chi University, Taiwan in 1998 and obtained his master degree
of computer science and information engineering from National Taiwan Uni-
versity, Taiwan in 2000. After a two-year military service where he was the
political warfare director and the co-commander of an army company, he came
to Japan. After the learning in a Japanese language school for one year, he
entered the Ph.D. course of the Graduate School of Informatics of Kyoto
University, Japan in 2003. His research interests include intelligent software
agent, information visualization, photo management, gesture interface and is
working on the generic ECA platform topic.

Project Advisors:

Prof. Toyoaki Nishida received the B.E., the M.E., and the Doctor of Engi-
neering degrees from Kyoto University in 1977, 1979, and 1984 respectively. In
1980, he joined Department of Information Science, Kyoto University as an
Assistant Professor. In 1988, he was promoted as an associate professor. In
1993, he joined Graduate School of Information Science Nara Institute of
Science and Technology as Professor. During 1998-2003, he led the Break-
through 21 Nishida Project, which is a five-year project sponsored by Ministry
of Posts and Telecommunications, Japan. In 1999, he moved to the University
of Tokyo as Professor. In 2004, he moved to the current position at Kyoto
University. His research area covers artificial intelligence in general. He has
been working on natural language understanding, spatial reasoning and quali-
tative reasoning. His current research focusing on knowledge communication,
including conversational knowledge process, knowledge sharing, and qualita-
tive reasoning.

Asst. Prof. Igor S. Pandzic received his BSc degree in Electrical Engineering
from the University of Zagreb in 1993, and MSc degrees from the Swiss Federal
Institute of Technology (EPFL) and the University of Geneva in 1994 and 1995,
respectively. He obtained his PhD from MIRALab, University of Geneva,
Switzerland in 1998. In the same year he worked as a visiting scientist at AT&T
Labs, USA. In 2001-2002 Igor was a visiting scientist in the Image Coding
Group at the University of Linkoping, Sweden. He is now an Assistant Pro-
fessor at the Department of Telecommunications, Faculty of Electrical Engi-
neering and Computing, University of Zagreb, Croatia. His main research
interests are in the field of computer graphics and virtual environments, with
particular focus on facial animation, embodied conversational agents, and their
applications in networked and mobile environments. Igor also worked on
networked collaborative virtual environments, computer generated film pro-
duction and parallel computing. Igor was one of the key contributors to the
Facial Animation specification in the MPEG-4 International Standard for which
he received an ISO Certificate of Appreciation in 2000.

Asst. Prof. Yukiko Nakano received her bachelor degree in psychology from
Tokyo Women’s Christian University, Japan in 1988, one master degree in
educational psychology from the University of Tokyo and the other one in
media arts and sciences from Massachusetts Institute of Technology, USA in
1990 and 2002, respectively. She obtained her Ph.D. in information science and
technology from the University of Tokyo, Japan in 2005. Yukiko was a re-
searcher of NTT Research Laboratories from 1990 to 2000 and was a sub-leader
researcher of Research Institute of Science and Technology for Society from

2002 to 2005. She moved to the Department of Computer, Information and
Communication Sciences of Tokyo University of Agriculture and Technology
as an associate professor in 2005. With her special interest in Embodied Con-
versational Agents (ECA), she has been studying human face-to-face commu-
nication in psychology and communication science, and creating multimodal
conversational interfaces based on a model of human communication behav-
iors.

Team Members:

Kateryna Tarasenko graduated from the National Technical University of
Ukraine “Kiev Polytechnic Institute” with a master degree in “Intelligence
Systems for Information processing and Decision making”. She entered the
Graduate School of Informatics of Kyoto University, Japan as a research
student in 2005. Her research interests include: embodied conversational agents,
simulation of non-verbal communication behaviors.

Goranka Zoric received her master degree from the Faculty of Electrical
Engineering and Computing, the University of Zagreb, Croatia in 2005 and is
currently both a PhD student and a research associative there. Her main interest
is in the field of facial animation and its application with Internet and mobile
technologies and virtual environments with particular focus on automatic lip
synchronization and gesturing of synthetic 3D avatars based only on the speech
input.

Vjekoslav Levacic graduated from the Faculty of Electrical Engineering and
Computing of University of Zagreb, Croatia in 2005 and is currently a graduate
student of the same university. His research interests include multimedia,
software architecture, web design, image processing, HCI and mobile networks.
(Vjekoslav will stay in Dubrovnik only for the first two weeks)

Aleksandra Cerekovic is in her fifth and final year as an undergraduate student
of the Faculty of Electrical Engineering and Computing of University of Zagreb,
Croatia. She worked on the topic of lip synchronization for real-time speech
recognition and synthesis. Besides that, she has the research interests on the
topics of embodied conversational agent and virtual environment.

Margus Treumuth received his bachelor and master degrees in computer
science from University of Tartu, Estonia, in 2002 and 2004 respectively. He is
now a PhD student in University of Tartu and has research interests in com-
putational linguistics and dialogue systems. (Margus will leave on 22/07)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

