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Abstract—In this project, we have developed a sign language tutor 

that lets users learn isolated signs by watching recorded videos and 
by trying the same signs. The system records the user’s video and 
analyses it. If the sign is recognized, both verbal and animated 
feedback is given to the user. The system is able to recognize 
complex signs that involve both hand gestures and head movements 
and expressions. Our performance tests yield a 99% recognition rate 
on signs involving only manual gestures and 85% recognition rate on 
signs that involve both manual and non manual components, such as 
head movement and facial expressions. 
 

Index Terms—Gesture recognition, sign language recognition, 
head movement analysis, human body animation  
 

I. INTRODUCTION 
HE purpose of this project is to develop a Sign Language 
Tutoring Demonstrator that lets users practice 
demonstrated signs and get feedback about their 

performance. In a learning step, a video of a specific sign is 
demonstrated to the user and in the practice step, the user is 
asked to repeat the sign. An evaluation of produced gesture is 
given to the learner; together with a synthesized version of the 
sign that lets the user get visual feedback in a caricatured 
form. 

The specificity of Sign Language is that the whole message 
is contained not only in hand gestures and shapes (manual 
signs) but also in facial expressions and head/shoulder motion 
(non-manual signs). As a consequence, the language is 
intrinsically multimodal. In order to solve the hand trajectory 
recognition problem, Hidden Markov Models have been used 
extensively for the last decade. Lee and Kim [1] propose a 
method for online gesture spotting using HMMs. Starner et al. 
[2] used HMMs for continuous American Sign Language 
recognition. The vocabulary contains 40 signs and the 
sentence structure to be recognized was constrained to 
personal pronoun, verb, noun, and adjective. In 1997, Vogler 
and Metaxas [3] proposed a system for both isolated and 
continuous ASL recognition sentences with a 53-sign 
vocabulary. In a later study [4] the same authors attacked the 
scalability problem and proposed a method for the parallel 
modeling of the phonemes within an HMM framework. Most 

systems of Sign Language recognition concentrate on hand 
gesture analysis only.  In , a survey on automatic sign 
language analysis is given and integrating non-manual signs 
with hand gestures is examined. 

A preliminary version of the tutor we propose to develop, 
demonstrated at EUSIPCO, uses only hand trajectory based 
gesture recognition [6]. The signs selected were signs that 
could be recognized based on solely the trajectory of one 
hand. In this project, we aim at developing a tutoring system 
able to cope with two sources of information: hand gestures 
and head motion. The database contains complex signs that 
are performed with two hands and head gestures. Therefore, 
our Sign Language Recognition system fuses the data coming 
from two sources of information to recognize a performed 
sign: The shape and trajectory of the two hands and the head 
movements.  T  

 
Fig. 1. Sign language recognition system block diagram 
 
Fig. 1 illustrates the steps in sign recognition. The first step 

in hand gesture recognition is to detect and track both hands. 
This is a complex task because the hands may occlude each 
other and also overlap other skin colored regions, such as the 
arms and the face.  To make the detection problem easier, 
markers on the hand and fingers are widely used in the 
literature. In this project, we have used differently colored 
gloves worn on the two hands. Once the hands are detected, a 
complete hand gesture recognition system must be able to 
extract the hand shape, and the hand motion. We have 
extracted simple hand shape features and combined them with 
hand motion and position information to obtain a combined 
feature vector. A left-to-right continuous HMM model with no 

 
This report, as well as the source code for the software developed during the 
project, is available online from the eNTERFACE’06 web site: 
www.enterface.net. 
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state skips is trained for each sign. These HMM models could 
be directly used for recognition if we were to recognize only 
the manual signs. However, some signs involve non-manual 
components. Thus further analysis of head movements and 
facial expressions must be done to recognize non-manual 
signs. 

Head movement analysis works concurrently with hand 
gesture analysis. Following the face detection step, a method 
based on the human visual system is used to calculate the 
motion energy and the velocity of the head, eye, eyebrows and 
mouth. These features are combined into a single feature 
vector and HMM models for the non-manual signs are trained. 

For the final decision, manual and non-manual HMM 
models are fused in a sequential manner. Decisions of the 
manual HMMs are used as the base for decision and non-
manual HMMs take part to differentiate between the variants 
of the base sign. 

Another new feature of the Sign Language Tutoring tool is 
that it uses synthesized head and arm motions based on the 
analysis of arm and head movements. This lets the user get 
accentuated feedback. Feedback, either TRUE or FALSE, is 
given for the manual component as well as for the non-manual 
one, separately. 

In this project, we have first defined a limited number of 
signs that can be used for sign language tutoring. 19 signs 
have been selected so that head motions are crucial for their 
recognition: Some signs have identical hand motions but 
different head motions. After defining the dataset, we have 
collected data from eight subjects. Each subject performed all 
the signs five times. 

The sign language tutor application was designed to show 
selected signs to the user and to let the user record his/her own 
sign using the webcam connected to the system. The 
application then runs the analysis, recognition, and synthesis 
subsystems. The recognized sign is identified by a text 
message and the synthesized animation is shown as feedback 
to the user. If the sign is not performed correctly, the user may 
repeat the test. 

This report is organized as follows: In section II, we give 
details of the sign language tutor application, together with 
database details. Section III details the analysis: hand 
segmentation, hand motion feature extraction, hand shape 
feature extraction, and head motion feature extraction. Section 
IV describes the recognition by fusion of information from all 
sources. Section V describes the synthesis of head motion, 
facial expressions, hands and arms motion. Section VI gives 
results of the recognition tests and Section VII concludes the 
report and outlines future directions. 

 

II. SIGN LANGUAGE TUTOR 

A. Sign Language 
The linguistic characteristics of sign language is different 

than that of spoken languages due to the existence of several 
components affecting the context such as the use of facial 

expressions and the head movements in addition to the hand 
movements. The structure of spoken language makes use of 
words linearly i.e., one after another, whereas sign language 
makes use of several body movements in parallel in a 
completely different spatial and temporal sequence.  

Language modeling enables to improve the performance of 
speech recognition systems. A language model for sign 
language is also required for the same purpose. Besides, the 
significance of co-articulation effects necessitates the 
continuous recognition of sign language instead of the 
recognition of isolated signs. These are complex problems to 
be tackled. For the present, we have focused on recognition of 
isolated words, or phrases, that involve manual and non-
manual components. 

There are many sign languages in the world. We have 
chosen signs from American Sign Language (ASL), since 
ASL is widely studied. However, our system is quite general 
and can be adapted to others. 

B. Database 
For our database, 19 signs from American Sign Language 

were used. The selected signs include non-manual signs and 
inflections in the signing of the same manual sign [5]. For 
each sign, we recorded five repetitions from eight subjects. 
The preferred video resolution was 640*480 pixels and the 
frame rate was 25 fps. Short descriptions about the signs we 
used in the database can be seen in TABLE I. 

 
TABLE I. ASL SIGNS IN THE DATABASE 

 

Sign Head / Facial 
Expression Hand 

[smbdy] is here Nod 

Is [smbdy] here? Brows up, Head 
forward 

[smbdy] is not 
here Head shake 

Circular motion parallel to 
the ground with right hand. 

Clean - 

Very clean 

Lips closed, head 
turns from right to 
frontt, sharp 
motion 

Right palm facing down, 
left palm facing up. Sweep 
left hand with right. 

Afraid - 
Hands start from the sides 
and meet in front of body, 
in the middle 

Very afraid 
Facial expression 
(lips open, eyes 
wide) 

The same as “afraid”, but 
shake the hands at the 
middle 

Fast - 

Very fast 

Facial expression 
(lips open, eyes 
wide), and sharp 
motion 

Hands start in front of 
body and motion towards 
the body. Fingers partially 
closed, thumb open 

To drink Head motion (up 
and down) 

Drinking motion, hand as 
holding a cup 

Drink (noun) - 
Repetitive drinking 
motion, hand as holding a 
cup. 
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To open door - 
Palms facing to the front. 
One hand moves as if the 
door is opened; only once. 

Open door (noun) - 

Palms facing to the front. 
One hand moves as if the 
door is opened. Repeat, 
with small hand motion 

Study - 

Left hand palm facing 
upwards, right hand all 
fingers open, mainly finger 
motion (finger tilt) 

Study 
continuously 

Circular head 
motion 
accompanies hand 
motion 

Left palm facing up, right 
hand all fingers open, 
finger tilt together with 
large and downward 
circular motion 

Study regularly 

Downward head 
motion 
accompanies hand 
motion 

Left palm facing upwards, 
right hand all fingers open, 
downward/ upward sharp 
motion, no finger motion 

Look at - 
Starting from the eyes, 
forward motion, two hands 
together. 

Look at 
continuously 

Circular head 
motion 
accompanies hand 
motion 

Starting from the eyes, 
forward motion, two hands 
together. Larger and 
circular motion 

Look at regularly 

Downward head 
motion 
accompanies hand 
motion 

Starting from the eyes, 
forward motion, two hands 
together. Sharp forward/ 
backward motion 

 

C. Tutor Application 
The sign language tutor application was designed to show 

selected signs to the user and to let the user record his/her own 
sign using the webcam connected to the system. The graphical 
user interface for the tutor can be observed in Fig. 2.  

 

 
 
 The graphical user interface consists of four panels: 

Training, Information, Practice and Synthesis. Training panel 

involves the teacher videos, thus the user can watch the videos 
to learn the sign by pressing the Play button. The program 
captures the user’s sign video after the Try button is pressed. 
Afterwards, information panel is used for informing the user 
about the results of his/her trial. There are three types of 
results: “ok” (the sign was confirmed), “false” (the sign was 
wrong) and “head is ok but hands are false”. Possible errors 
are also shown in this field.  

Users can watch the original captured video or the 
segmented video in this panel as shown in Fig. 3. Afterwards, 
if the user wants to see the synthesized video, he/she can use 
the synthesis panel. 

 

 

III. SIGN LANGUAGE ANALYSIS 

A. Hand segmentation 
The user wears gloves with different colors when 

performing the signs. The two colored regions are detected 
and marked as separate components. Ideally, we expect an 
image with three components: the background, the right hand 
and the left hand.  

 
Fig. 3: A screenshot of original and segmented videos 

 

For the classification, histogram approach is used as 
proposed in [7]. Double thresholding is used to ensure 
connectivity, and to avoid spikes in the binary image. We 
prefer HSV color space as Jayaram et al. [7] and Albiol et al. 
[8] propose. HSV is preferred because of its robustness to 
changing illumination conditions. 

The scheme is composed of training the histogram and 
threshold values for future use. We took 135 random snapshot 
images from our training video database. For each snapshot, 
ground truth binary images were constructed for the true 
position of the hands. Using the ground truth images, we have 
constructed the histogram for the left and right hands, 
resulting in two different histograms. Finally, normalization is 
needed for each histogram such that the values lie in the 
interval [0,1]. 

The low and high threshold values for double thresholding 
are found in training period. When single thresholding is used, 
a threshold value is chosen according to the miss and false 
alarm rates. Since we use double thresholding, we use an 
iterative scheme to minimize total error. We iteratively search 
for the minimum total error. This search is done in the range 
[μ-δ,μ+δ] to decrease the running time, where μ is the mean 
and δ is the standard deviation of the histogram. 

Fig. 2: Sign Language Tutoring Tool GUI 

After classification by using the scheme described above, 
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we observed that some confusing colors on the subject’s 
clothing were classified as hand pixels. To avoid this, we 
selected the largest connected component of the classified 
regions into consideration. Thus we had only one component 
classified as hand for each color.  

This classification approach can also be used for different 
colored gloves or skin after changing the ground truth images 
in the training period. 

 

B. Hand motion analysis 
The analysis of hand motion is done by tracking the center 

of mass (CoM) and calculating the velocity of each segmented 
hand. However, these hand trajectories are noisy due to noise 
introduced at the segmentation step. Thus, we use Kalman 
filters to smooth the obtained trajectories. The motion of each 
hand is approximated by a constant velocity motion model, in 
which the acceleration is neglected. 

Two independent Kalman filters are used for each hand. The 
initialization of the Kalman Filter is done when the hand is 
first detected in the video. At each sequential frame, Kalman 
filter time update equations are calculated to predict the new 
hand position. The hand position found by the hand 
segmentation is used as measurements to correct the Kalman 
Filter parameters. Posterior states of each Kalman filter is 
defined as feature vectors for x, y coordinates of CoM and 
velocity. The hand can be lost due to occlusion or bad lighting 
in some frames. In that case, Kalman Filter prediction is 
directly used without correcting the Kalman Filter parameters. 
The hand is assumed to be out of the camera view if no hand 
can be detected for some number of (i.e. six) consecutive 
frames. Fig. 4 shows the extracted trajectories for each hand 
for the “fast” sign.  

 
Fig. 4. Hand trajectories for sign “fast” 

 

C. Hand shape analysis 
Hand shape analysis is performed during sign recognition in 

order to increase the accuracy of recognition system and to 
differentiate between signs that differ only in hand shape. 
Each sign has a specific movement of the head, hands and 
hand postures. The extreme situation is when two signs have 
the same movements of head and hands and they differ only in 
hand postures. In this case, hand shape analysis is necessary to 
distinguish between them. 

Another application can be in sign synthesis. If we analyze 
an unknown gesture and want to synthesize it with the same 

movements to caricature the movements of the actor, then 
finger and palm movements may be synthesized by following 
these steps: 1) unknown hand shape is classified into one of 
predefined clusters, 2) hand posture synthesis of classified 
cluster is performed (synthesis is prepared for each cluster). 
This can be useful whenever it is difficult to analyze finger 
and palm positions directly from image, for example when 
only low resolution images are available. This was the case in 
this project – each hand shape image was smaller than 80x80 
pixels. 
 

1) Input – binary image 
After the segmentation of the source image is done,  two 
binary images (only two colours representing background and 
hand) of left and right hand are analyzed.The mirror reflection 
of the right hand is taken so we analyze both hands in the 
same geometry; with thumb to the right. There are several 
difficulties using these images: 

1. Low resolution (max. 80 pixels wide in our case) 
2. Segmentation errors due to blurring caused by fast 

movement (see Fig. 5b) 
3. Two different hand postures can have the same 

binary image (see Fig. 5a; which can be left hand 
observed from top or right hand from bottom) 

 

               
 
 
Fig.5. Two different hand segmentations: a. Hand shape 1; b. 

hand shape 2 
 

2) Hand shape analysis – feature extraction 
The binary image is converted into a set of numbers which 

describe hand shape, yielding the feature set. The aim is to 
have similar values of features for similar hand shapes and 
distant values for different shapes. It is also required to have 
scale invariant features so that images with the same hand 
shape but different size would have the same feature values. 
This is done by choosing features which are scale invariant. 
Our system uses only a single camera and our features do not 
have depth information; except for the foreshortening due to 
perspective. In order to keep this information about the z-
coordinate (depth), five of the 19 features wer not normalized. 
All 19 features are listed in TABLE II. 
 

TABLE II. HAND SHAPE FEATURES 
 

invariant # feature 

scale rotation 

1 Best fitting ellipse width  9 

2 Best fitting ellipse height  9 
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invariant 

3 Compactness (perimeter2/area) 9 9 

4 Ratio of hand pixels outside / inside of ellipse 9 9 

5 Ratio of hand / background pixels inside of ellipse 9 9 

6 sin (2*α)    α = angle of ellipse major axis  9  

7 cos (2*α)    α = angle of ellipse major axis  9  

8 Elongation (ratio of ellipse major/minor axis length) 9 9 

9 Percentage of NW (north-west) area filled by hand 9  

10 Percentage of N area filled by hand 9  

11 Percentage of NE area filled by hand 9  

12 Percentage of E area filled by hand 9  

13 Percentage of SE area filled by hand 9  

14 Percentage of S area filled by hand 9  

15 Percentage of SW area filled by hand 9  

16 Percentage of W area filled by hand 9  

17 Total area (pixels)  9 

18 Bounding box width   

19 Bounding box height   

 
An initial idea was to use “high level” knowledge about the 

shape such as finger count, but the problems listed previously 
caused us to use more low level features, which are robust to 
segmentation errors and work well with low resolution 
images. 

Seven of the features (#1,2,4,5,6,7,8) are based on using the 
best fitting ellipse (in least-squares sense) to a binary image, 
as seen in Fig. 6a.. The angle α is a value from 0° to 360°. 
However, only only values from 0 to 180 are meaningful, 
because the ellipse has mirror symmetry. Hence only 0° to 
180° interval is used. Another problem is the following: 
Consider 5° and 15° ellipses, which have similar angles and 
similar orientation. 5° and 175° ellipses have similar 
orientations as before, but the angles are completely different. 
In order to represent this difference, we use sin(2*α) and 
cos(2*α) as features.  
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6  a. Best fitting ellipse; b. Area filters 
 

Features #9 to 16 are based on using “area filters”, as seen in 
Fig. 6a. The bounding box of the hand is divided into eight 
areas, in which percentage of hand pixels are calculated. 

Other features in TABLE II, are perimeter, area and 
bounding box width and height. 
 

3) Classification 
Hand shape classification can be used for sign synthesis or 

to improve the recognition: The classified cluster can be used 
as new feature: We can use hand features for recognition only 
when the unknown hand shape is classified into a cluster (this 
means that the unknown hand shape is similar to a known one 
and not to a blurred shape which can have misleading 
features). 

We have tried classification of hand shapes into 20 clusters 
(see Fig. 7 “clusters”). Each cluster is represented by 
approximately 15 templates. We use K-means algorithm 
(K=4) to classify unknown hand shape (represented by set of 
features described above). If the distance of unknown shape 
and each cluster is greater than 0.6 then this shape is declared 
as unclassified. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 7. a.The hand clusters; b.Similarity of clusters 

 
As seen in Fig. 7b, some of the clusters are more similar 

than the others. For example, clusters 12, 14 and 19  are 
similar; so it is more difficult to correctly classify the 
unknown shape into one of these clusters. 
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Fig. 8 Classification example: distances between an unknown 

hand shape and center of 20 clusters. 

 
a .[best fitting 
ellipse] 

 
b. [area filters] 
white: areas without hand
green: areas with hand 

 

 
each row and column (1 
to 20) represents 1 
cluster. 
darker point = more 
similar clusters   

a. Clusters             b. Similarity of Clusters
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Classification of hand shapes is made in each frame of video 
sequence. It is reasonable to use information from previous 
frames, because hand shape cannot change so fast in each 
frame (1 frame = 40ms). Usually the classification is the same 
as in the previous frame, as seen in Fig. 8, where an unknown 
shape is classified into a cluster with the smallest distance. 

To avoid fast variations of classifications we proposed a 
filter which smoothes these distances by weighted averaging 
Fig. 9 shows a classification example with filtering. 
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Classification example:
Distances between unknown hand shape and 20 clusters [filtered]

 
Fig. 9 Classification example: distances between an unknown 

hand shape and center of 20 clusters (filtered). 
 

The new distance is calculated by the following  equation: 
 

Dnew(t) = 0.34 · Dold(t) + 0.25 · Dold(t-1) + 0.18 · Dold(t-2)  
    + 0.12 · Dold(t-3) + 0.07 · Dold(t-4) + 0.04 · Dold(t-5) 

 
By comparing Fig. 8 and 9, one can see that this filter 

prevents fast changes in frames 5 and 6. This filter is designed 
to work in real-time applications. If used in offline 
application, it can easily be changed to use information from 
the future to increase the accuracy. 

 

D. Head motion analysis 
1) General Overview of the system 

Once a bounding box around the sign language student’s 
face has been detected, rigid head motions such as head 
rotations and head nods are detected by using an algorithm 
working in a way close to the human visual system. In a first 
step, a filter inspired by the modeling of the human retina is 
applied. This filter enhances moving contours and cancels 
static ones. In a second step, the fast fourier transform (FFT) 
of the filtered image is computed in the log polar domain as a 
model of the primary visual cortex (V1). This step allows 
extracting two types of features: the quantity of motion and 
motion event alerts. In parallel, an optic flow algorithm 
extracts both vertical and velocity information only on the 
motion events alerts provided by the visual cortex stage. Fig. 
10 gives a general overview of the algorithm. This module 
provides three features per frame: the quantity of motion, 
horizontal velocity and vertical velocity. 

 

 
 

Fig. 10: Algorithm for rigid head motion data extraction 
 
2) Description of the components 

The first step consists in an efficient prefiltering [9]: the 
retina OPL (Outer Plexiform Layer) that enhances all contours 
by attenuating spatio-temporal noise, correcting luminance 
and whitening the spectrum (see Fig. 2). The IPL filter (Inner 
Plexiform Layer) [9] removes the static contours and extracts 
moving ones. This prefiltering is essential for data 
enhancement and allows minimizing the common problems of 
video acquisition such as luminance variations and noise. 

The second step consists in a frequency analysis of the IPL 
filter output around the face whose response is presented on 
Fig.11. By computing the total energy of the amplitude 
spectrum of this output, as described in [10], we have 
information that depends linearly on the motion. The temporal 
evolution of this signal is the first data that is used in the sign 
language analyzer. 
 

Fig. 11: Retina preprocessing outputs: extraction of enhanced 
contours (OPL) and moving contours (IPL) 
 

In order to estimate the rigid head rotations [10], the 
proposed method analyses the spectrum of the IPL filter 
output in the log polar domain. It first detects head motion 
events [11] and is also able to extract its orientation. Then, in 
order to complete the description of the velocity, we propose 
to use features based on neuromorphic optical flow filters [12] 
which are oriented filters able to compute the velocity of the 
global head. Finally, optical flow is computed only when 
motion alerts are provided and its orientation is compared to 
the result given by the spectrum analysis. If the information is 
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redundant, then we extract the velocity value at each frame, 
either horizontal or vertical in order to simplify the system. 

• All the frames at the beginning of the sequence are 
eliminated until the hand is detected. 

  • If the hand can not be detected at the middle of the 
sequence for less than N frames, the shape 
information is copied from the last frame where there 
is detection. 

3) Extracted data sample 
In the end, the head analyzer is able to provide three signals 

per frame, information related to the quantity of motion and 
the vertical and horizontal velocity values. Fig. 12 shows two 
examples of the evolution of these signals, first in the case of 
a sequence in which the person expresses an affirmative 
« Here », second in the case of the expression of the sign 
«Very clean ». For the first sign, the head motion is a 
sequence of vertical head nods. Then, the quantity of motion 
indicator shows a periodic variation of its values with high 
amplitude for maximum velocity. The vertical velocity 
presents non zero values only during motion and also exhibits 
a periodic variation. On the contrary, the horizontal velocity 
indicator remains at zero. The « Very clean » sign consists of 
two opposite horizontal head motions. The quantity of motion 
indicator exhibits them. This time, the horizontal motion 
reports the velocity sign and amplitude variations while the 
vertical velocity indicator remains at zero. On this last 
sequence, we can see that some false alarms can be generated 
at the velocity output level: For example, at frame 68, a false 
horizontal motion is detected, but since the value of the 
quantity of motion is low, this velocity should not be taken 
into account. This is the advantage of using two detection 
signals: the cortex analysis model helps the velocity analyzer. 

• If the hand can not be detected for more than N 
consequent frames, the sign is assumed to be 
finished. Rests of the frames including the last N 
frames are eliminated. 

• After indicating the start and end of the sequence and 
eliminating the unnecessary frames the transition 
frames can be eliminated by deleting T frames from 
the start and end of the sequence. 

 

B. Sign features and normalization issues 
 
1) Hand motion features 

The trajectories must be further normalized to obtain 
translation and scale invariance. We use a similar 
normalization strategy as in [13]. The normalized trajectory 
coordinates are calculated with the following formulas: 

 

 
Fig. 12: Data extracted by the head analyzer 

 

IV. SIGN LANGUAGE RECOGNITION 

A. Preprocessing of sign sequences 
The sequences obtained from the videos contain parts where 

the signer is not performing the sign (start and end parts) and 
some parts that can be considered as transition frames. These 
frames of the sequence are eliminated by looking at the result 
of the segmentation step: 

Let (<x1;y1>;...;<xt;yt>;...;<x ;yN N>) be the hand trajectory 
where N is the sequence length.  For translation 
normalization, define xm and ym: 

xm = (x  + x ) / 2 max min
ym = (y  + y ) / 2 max min

 
where xm and ym are the mid-points of the range in x and y 
coordinates respectively. For scale normalization, define dx 
and dy: 

dx = (x  / x ) / 2 max min
dy = (y  / y ) / 2 max min

 
where dx and dy are the amount of spread in x and y 
coordinates respectively. The scaling factor is selected to be 
the maximum of the spread in x and y coordinates, since 
scaling with different factors disturbs the shape. 
 

d = max(dx; dy) 
 

;y′ >;...;<x′The normalized trajectory coordinates, (<x′1 1 t;y′t>; 
...;<x′ ;y′ >) such that 0 <=  x′N N t , y′t <=  1, are then calculated 
as follows: 

x’t = 0.5 + 0.5 (xt - xm) / d 
y’t = 0.5 + 0.5 (yt - ym) / d 

 
Since the signs can be also two handed, both hand 

trajectories must be normalized. However, normalizing the 
trajectory of the two hands independently may result in a 
possible loss of data. To solve this problem, the midpoints and 
the scaling factor of left and right hand trajectories are 
calculated jointly. Following this normalization step, the left 
and right hand trajectories are translated such that their 
starting position is (0,0). 
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2) Hand position features 
In sign language, the position of the hand with respect to the 

body location is also important. We integrated position 
information by calculating the distance of the CoM of each 
hand to the face CoM. The distance at x and y coordinates are 
normalized by the face width and height respectively. 

 
3) Hand shape features 
All 19 hand shape features are normalized into values between 
0 and 1. Features calculated as percentage (0 to 100%) are just 
divided by 100. The rest of features is normalized by using 
this equation: 

Fnormalized = (F - min) / ( max – min) 
where min is minimal value of feature (in training dataset) and 
max is maximum value. In case smaller or greater value 
occurs, Fnormalized is truncated to stay in <0,1>. 
 
4) Head motion features 

Head motion analysis provides three features that can be 
used in the recognition: motion energy of the head, horizontal 
and vertical velocity of the head. However these features are 
not invariant to differences that can exist between different 
performances of the same sign. Moreover, the head motion is 
not directly synchronized with the hand motion. To handle 
inter and intra personal differences, adaptive smoothing is 
applied to head motion features where α is used as 0.5: 

Fi = α Fi + (1 - α) Fi-1
 
This smoothing has an effect of cancelling the noise between 
different performances of a sign and creating a smoother 
pattern. 
 

C. HMM modeling 
After sequence pre-processing and normalization, HMM 
models are trained for each sign, using Baum-Welch 
algorithm. We have trained 3 different HMMs for comparison 
purposes: 

• HMMmanual uses only hand information. Since hands 
form the basis of the signs, these models are expected 
to be very powerful in classification. However, 
absence of the head motion information prohibits a 
correct classification when the only difference of two 
signs is related to the head motion (i.e. here, ishere 
and not here) 

• HMMmanual&nonmanual uses hand and head information. 
Since there is not a direct synchronization between 
hand and head motions, these models are not 
expected to have much better performance than 
HMMmanual. However using head information results 
in a slight increase in the performance. 

• HMMnonmanual uses only head information. The head 
motion is complementary of the sign thus it can not 
be used alone to classify the signs. A data fusion 
methodology is needed to utilize these models 
together with models of manual components. 

 

D. Fusion of different modalities of sign language 
We have used a sequential score fusion strategy for 

combining manual and non-manual parts of the sign. We want 
our system to be as general as possible and capable of 
extending the sign set without changing the recognition 
system. Thus, we do not use any prior knowledge about the 
sign classes. For example, we know that here, ishere and 
nothere have exactly the same hand information but the head 
information differs. Using this prior information as a part of 
the recognition system increases the performance however the 
system looses its extendibility for upcoming signs since each 
sign will require a similar prior information. Instead we 
choose to extract the cluster information as a part of the 
recognition system. 

Base decision is given by an HMM which uses both hand 
and head features in the same feature vector. However, the 
decision of these models is not totally correct since the head 
information is not utilized well. We used the likelihoods of 
HMMnonmanual to give the final decision.  
 

 
 
Fig. 13. Sequential fusion strategy 
 
1) Training 

• During training, models for each sign class are 
trained for HMMmanual&nonmanual and HMMnonmanual.  

• The cluster information for each sign is extracted 
from the confusion matrix of HMMmanual&nonmanual. In 
the confusion matrix of the validation set the 
misclassifications are investigated. If all examples of 
a sign class are classified correctly, the cluster of that 
sign class only contains itself. For each 
misclassification, we add that sign class to the 
cluster.  

  
2) Testing 
The fusion strategy (Fig. 13) for an unseen test example is as 
follows: 

• Likelihoods of HMMmanual&nonmanual for each sign class 
are calculated and the sign class with the maximum 
likelihood is selected as the base decision. 

• Selected sign and its cluster information are sent to 
HMMnonmanual.  

• HMMnonmanual likelihood of the selected sign is 
calculated as well as the likelihoods of the signs in its 
cluster. 

• Among these likelihoods, the sign class with the 
maximum HMMnonmanual likelihood id selected as the 
final decision. 
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V. SYNTHESIS AND ANIMATION 

A. Head motion and facial expression synthesis 
The head synthesis performed in the present project is based 

on the MPEG-4 Facial Animation Standard [14], [15]. In 
order to ease the synthesis of a virtual face, the MPEG-4 
Facial Animation (FA) defines two sets of parameters in a 
standardized way. The first set of parameters, the Facial 
Definition Parameter (FDP) set, is used to define 84 Feature 
Points (FP), located on morphological places of the neutral 
head, as depicted in Fig. 14 (black points). The feature points 
serve as anchors for 3D face deformable meshes, represented 
by a set of 3D vertices. 

The second set defined by the MPEG-4 Standard is the 
Facial Animation Parameter (FAP) set. The Facial Animation 
Parameters (FAPs) represent a complete set of basic facial 
actions closely related to muscle movements and therefore 
allow the representation of facial expressions by modifying 
the positions of the previously defined feature points (FP). 
They consist of a set of 2 high-level (visemes and 6 archetypal 
emotions) and 66 low-level parameters (depicted as white 
filled points on Fig. 14). In this project, we only use the low-
level parameters which are basic deformations applied to 
specific morphological places of the face, like the top middle 
outer-lip, the bottom right eyelid, etc... 

 
Fig. 15 : Head synthesis system architecture 

 
 

 
Fig. 14. The 3D feature points of the FDP set 

 
The head synthesis system architecture is depicted on Fig. 

15. As input, we receive the detected gesture (one data per 
sequence), the IPL energy, and the vertical and horizontal 
velocity of the head motion (as much data as frames in the 
sequence). We then filter and normalize these data in order to 
compute the head motion during the considered sequence. The 
result of the processing is expressed in terms of FAPs so that 
we can output a FAP file. The FAP file for the considered 
sequence is fed into the animation player. The animation 
player we used is an MPEG-4 compliant 3D talking head 
animation player developed by 

 
Fig. 16. Rendered head with different input values 

 

B. Hands and arms synthesis 
For the hands and arms synthesis, we use a library of 

predefined positions for each gesture. Each animation has key 
positions (the positions that define the gesture) and 
interpolated positions.  To create an animation we only need 
to set the key positions in the correct frames depending on the 
speed we want to get, and then interpolate the rest of the 
frames.  

[16], part of an open source 
tools set available at [17]. Once rendered, we finally output an 
avi file containing the head synthesis sequence. Fig. 16 shows 
an example rendering with respect to the input data. For our system, we need to do two different adaptations: 

speed adaptation, and position adaptation. The gesture 
detected is supposed to be closer to its predefined one, so we 
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can define a set of steps that will be the same for each 
synthesis. 

To create an animation from the features communicated by 
the analysis module, we have to follow the following steps:  

1. Physical features extraction: from the input file, we 
extract the information about the head position, the length of 
the arms, and the maximal and minimal values of the hands 
coordinates (x,y). These will be used to normalize the 
information in order to adapt the system to our avatar features. 
 

 
 

Fig. 17 : Arms system and main features. 
 

2. Speed features extraction:  For each gesture, we need to 
find the frames where the speed changes the most (border 
frames), because these frames will define our key positions. 
We find these features by differencing the coordinates of each 
frame and the next one. If the variation is smaller than a 
threshold we have set, it is supposed to be the same position 
than the last frame. It is necessary to know how much time we 
have to hold a position. With this extraction we have defined 
the frames where we will set the key positions.  

3. Physical adaptation and position definition: We can 
adapt the the parameters of our avatar according to the 
analysis results. Depending on the minimal and maximal 
values, we have extracted for x and y, we choose two 
predefined positions for each border frame, and then we 
interpolate these positions to get a new one. All positions we 
get here will be our key positions. 

 
Fig. 18 : System structure for hands and arms synthesis. 

 
4. Set positions depending on the speed features: To set the 

positions we have created, we take the border frames defined 
in step 2. We set the key positions for the border frames, 
holding them if necessary. After this, we only need to 
interpolate the rest of the frames, to get the final animation. 
From the final animation we will generate the video output 
that will be represented with the head result to show the 
complete avatar playing the gesture that the person in front of 
the camera did. 

VI. RECOGNITION RESULTS 
We have used 70% of the signs in the database for training 

and the rest for testing. The distributions of sign classes are 
equal both in training and test sets. Confusion matrices and 
performance results are reported on the test set. 

The confusion matrix of HMMs that are trained by using 
only hand information is shown in TABLE III. The total 
recognition rate is 67%. However, it can be seen that most of 
the misclassifications are between the sign groups where the 
hand information is the same or similar and the main 
difference is in the head information, which is not utilized in 
this scheme. When sign clusters are taken into account, there 
are only five misclassifications out of 228; resulting in a 
97.8% recognition rate. 

 
TABLE III. CONFUSION MATRIX. (ONLY HAND INFORMATION) 

 
 

The confusion matrix of HMMs that are trained by the 
combined feature vector of hand and head information is 
shown in TABLE IV. The total performance is 77%. All 
misclassifications, except one, are between the sign groups. 
Although there is a slight increase in the performance, this 
fusion method does not utilize the head information 
effectively. Therefore, we have adopted the sequential fusion 
fusion strategy described in Section IVD.  

The confusion matrix of the sequential fusion methodology 
is shown in TABLE IV. The total performance is 85.5%. The 
misclassifications between the sign groups are very few 
except for the study and look at sign groups. The reason of 
these misclassifications can be related to the deficiency of 
vision hardware or to the misleading feature values: 
• The study sign: The confusion between study regularly 

and study continuously can stem from a deficiency of the 
2D capture system. These two signs differ mainly in the 
third dimension, which we cannot capture. The confusion 
between study and study regularly can be a result of over-
smoothing the trajectory.  

• For the look at sign, the hands can be in front of the head 
for many of the frames. For those frames, the face 
detector may fail to detect the face and may provide 
wrong feature values which can mislead the recognizer. 
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Manual sign classification performance is 99.5%, which 
means only one sign is misclassified out of 228. 

 
TABLE IV. CONFUSION MATRIX. FEATURE LEVEL FUSION 

 
 

TABLE 3. CONFUSION MATRIX. SEQUENTIAL FUSION 

 

VII. CONCLUSIONS AND FUTURE WORK 
In this project, we have developed a sign tutor application 

that lets users learn and practice signs from a predefined 
library. The tutor application records the practiced signs; 
analyses the hand shapes and movements as well as the head 
movements, classifies the sign, and gives feedback to the user. 
The feedback consists of both text information and 
synthesized video, which shows the user a caricaturized 
version of his movements when the sign is correctly classified. 
Our performance tests yield a 99% recognition rate on signs 
involving manual gestures and 85% recognition rate on signs 
that involve both manual and non manual components, such as 
head movement and facial expressions. 
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APPENDIX : SOFTWARE NOTES 
Since the individual parts in this project were coded in C, 

C++ and MATLAB, we preferred MATLAB to combine them 
for the tutor. MATLAB GUI was used to prepare the user 
interface.  

We used the “Machine Perception Toolbox” [18] for head 
analysis. For HMM training, HMM routines in [19] are used. 
We also used “Intel Open Source Computer Vision Library” 
[20] routines in our project. 
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