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Abstract— The goal of this project is to convert a given
speaker’s speech (the Source speaker) into another identified
voice (the Target speaker) as well as analysing the face animation
of the source to animate a 3D avatar imitating the source
facial movements. We assume we have at our disposal a large
amount of speech samples from the source and target voices
with a reasonable amount of parallel data. Speech and video are
processed separately and recombined at the end.

Voice conversion is obtained in two steps: a voice mapping step
followed by a speech synthesis step. In the speech synthesis step,
we specifically propose to select speech frames directly from the
large target speech corpus, in a way that recall the unit-selection
principle used in state-of-the-art text-to-speech systems.

The output of this four weeks work can be summarized as: a
tailored source database, a set of open-source MATLAB and C
files and finally audio and video files obtained by our conversion
method. Experimental results show that we cannot aim to reach
the target with our LPC synthesis method; further work is
required to enhance the quality of the speech.

Index Terms— voice conversion, speech-to-speech conversion,
speaker mapping, face tracking, cloning, morphing, avatar con-
trol.

I. INTRODUCTION

THIS project aims at converting a given speaker speech
and facial movements into those of another (identified)

speaker. More precisely, it focuses on controlling a 3D talking
face (the avatar of the target speaker) using the most natural
interfaces available : the speech and facial movements of a
human speaker (the source speaker). It also assumes that the
target will generally be different from the source, so that the
project goes much further than the design of a state-of-the-art
avatar controlled by the original speaker (i.e., the same as the
one whose face was used to create the avatar). As a matter of
fact, two additional problems are encountered here:

• That of voice conversion, in order to make the target
talking face speak with the target’s voice, producing the
source’s words.

• That of facial movement conversion, in order to adapt
the movement excursions of the source face to match the
movement excursions of the target face.

The multimodal conversion problem we consider here,
however, is limited to signal-level modification, as opposed
to semantic conversion. The latter would enable, for instance,
filtering out some (most often paralinguistic) communication

This report, as well as the source code for the software developed
during the project, is available online from the eNTERFACE’06 web site:
http://www.enterface.net/enterface06.

acts (be them speech and/or facial movements, such as tics)
of the source which the target never produces, or conversely
adding target movements not present in the source but usually
in the target.

Moreover, we constraint the conversion process to maintain
some large-sense synchronicity between source and target: we
do not aim at adapting speech rate at the phoneme level,
but rather simplifying it to a possible overall speech rate
adaptation. Similarly, we do not consider a possible syllable-
level F0 conversion from source to target, but rather aim at a
possible overall F0 adaptation ratio.

It will be assumed that a large amount of studio-quality
speech data is available from the source and from the target.
This is not a usual assumption for systems which try to put new
words in the (virtual) mouth of most VIP characters (whom
cannot be easily forced to attend a formal recording session
in a studio). The assumption, however, remains realistic in the
case of a source speaker driving a famous target speaker whose
voice has been recorded in large amounts but who is simply
no longer (or not always) available. It is also assumed that this
speech data is available in the form of parallel speech corpora
(i.e., recordings of the same sentences by both the source and
the target).

A typical application of this project is therefore that of a
human actor controlling the speech and facial movements of
a 3D character whose voice is well-known to the audience.
Another possible use is for psychologists talking to children
through an avatar whose voice should be kept unchanged
among sessions, even though the psychologist may change.
If we reduce this project to its speech component, a typical
application is that of a tool for producing natural sounding
voice prompts with the voice of a voice talent, based on natural
speech (prosody and spectral features) produced by a human
speaker.

Last but not least, a side constraint of this work is that we
aim at using and producing open-source code, as required by
the eNTERFACE workshop organization.

Figure 1 shows the necessary steps involved in our project:
speech/face analysis, voice/facial movements mapping, and
speech/face synthesis. This report is therefore organized as
follows. Section II browses the state-of-the-art in speech
analysis, mapping, and synthesis for voice conversion, and
examines the approach we have followed in this project.
Section III examines facial movement analysis, mapping and
synthesis for avatar face animation, and gives details on the
algorithms we have used. This is followed in section IV by



Fig. 1. An example of 3D cartoon avatar control using source speech and facial movements, and mapping them to target speech and face.

the experiments we did, using a specially designed database,
and by some informal assesment of the quality we reached
at the end of the 4-weeks project. The paper is concluded in
Section V by perspectives for further developments.

II. SPEECH ANALYSIS, MAPPING, AND SYNTHESIS FOR
VOICE CONVERSION

We understand the Voice Conversion (VC) process as a
modification of a speaker voice (source speaker) so that it
resembles that of another given speaker (target speaker). Our
goal is to obtain a transformation that makes the source speech
sound as if it were spoken by the target speaker.

In this work, we have approached the speech conversion
task from x (source speaker) to y (target speaker) in two
independent blocks:

• mapping from x to y′ (a first approximate of y) using the
(reduced) parallel corpus, and

• speech-to-speech (S2S) synthesis from y′ to y′′ (a second
–and more accurate– approximate of y), using the (full)
target corpus.

The first block involves aligning the data on a frame by
frame basis (section II-A) and building a mapping function
(either using Gaussian Mixture Models or Conditional Vector
Quantization, as will be seen in section II-B). In the second
block, for the successive frames of y′, we select new frames
from a large database of y voice, in such a way that we
guarantee both maximum similarity to the input frames, and
maximum continuity (the details are given in section II-D.3).
This can be seen as a smoothing step, made necessary by the
fact that the reduced size of the parallel corpus resulted in
large, non-acceptable discontinuities in the synthetic speech.

It is worth mentioning that since a large amount of data
for the target is available for this particular application (as
it is also the case for the design of a state-of-the-art text-to-
speech (TTS) system), the challenge of this project is to be
able to produce more natural sounding speech than that of a
TTS system, trained with the same amount of data, and used to
synthesize the phonemes obtained by automatic phonetic seg-
mentation (speech recognition) of the input source waveform.
As a matter of fact, the input of the voice conversion system
is itself natural speech, which can hopefully be put to profit
to deliver natural-sounding output speech. The intonation of
the source speech, for instance, can readily be used (possibly
modified) to produce the intonation of the target speech, and
thus obtain an improvement in synthesis quality over standard
TTS.

Furthermore, it is then possible to establish upper and lower
bounds to the synthesis quality we can obtain with our frame-
based voice conversion system. The lower bound would be that
obtained with a TTS backend. In this case, we would directly
use the prosody of the source waveform and the phonemes,
obtained with automatic speech recognition. The TTS would
then only need to perform unit selection and concatenation
based on this requirements. This way we expect to obtain
a higher similarity and naturality than when using only the
source (recognized) text as input. The upper bound would of
course be the natural target speech.

A. Data alignment

Although the corpus used for the voice mapping part of
+this project (see Section IV) consists of parallel utterances,
some timing differences are unavoidable due to different
speaker characteristics (pause durations, speech rate, etc.).
Since the training of the voice mapping block of fig. 1 requires
parallel data vectors, the utterances of the source and target
speakers have been aligned using a dynamic time warping
(DTW) procedure. For this project, we used the DTW algo-
rithm implemented by Dan Ellis1 and released under GPL. The
local match measure is computed as the cosine distance (angle
of the vectors) between the Short-Time Fourier Transform
(STFT) magnitudes. The left part of fig. 2 represents the
local match scores matrix, with darker zones indicating high
similarity values (ideally we would have a dark stripe down
the leading diagonal).In the right part of the figure we can see
the minimum-cost-to-this-point matrix (lighter color indicates
lower cost). In both subfigures, the red line shows the lowest-
cost path obtained by the DTW algorithm.

The DTW algorithm introduces some unavoidable errors
due to the coexistence of intrinsic spectral differences between
the two speakers. An iterative procedure can be applied
to improve the alignment, by reapplying the DTW method
between the converted and target envelopes [1]. After each
iteration, a new mapping function can be estimated between
the newly aligned original source and target data. In this
project, convergence was reached after three iterations.

B. Voice mapping

When converting the voice of the source to the voice of a
the target speaker we assume that these two voices are defined
by their spectral spaces X and Y respectively. Our problem

1http://labrosa.ee.columbia.edu/matlab/dtw/



Fig. 2. Left: Graphical representation of the local match scores matrix (darker
colors represent a closer match). Right: Minimum cost matrix (lighter colors
indicate a lower cost). The red line shows the optimal alignment path as found
by the DTW algorithm.

in voice conversion is two-fold: at first we have to find a way
to model these spaces and then we have to find a way to
map a previously unknown example from the source space to
the target space. In order to be able to find such a mapping
we assume that there is aligned training data available. This
means that we have two sets of spectral vectors xt and yt that
describe spectral envelopes from source and target speakers
respectively. The two sets of vectors {xt, t = 1, . . . , N} and
{yt, t = 1, . . . , N} have the same length N and are supposed
to describe sentences uttered in parallel by source and target.
What is desired is a function F() such that the transformed
envelope F(xt) best matches the target envelope yt, for all
envelopes in the learning set (t = 1, . . . , N ).

In our project we tried two different approaches in order to
achieve the goal of conversion: Gaussian Mixture Models and
Conditional Vector Quantization.

a) Gaussian Mixture Models: The first approach has
been described by Stylianou et al.[1] and is based on a de-
scription of the source space using Gaussian Mixture Models:

p(x) =
M∑
i=1

αiN (x;µi,Σi) (1)

where M is the number of Gaussians, µi,Σi are the mean
vector and the covariance matrix of the i-th Gaussian com-
ponent, and αi are the weights used to combine the different
components. These M Gaussian components can be regarded
as classes within the spectral space of the source and a vector
xt can be classified to one of the classes using maximum
likelihood. The mapping to the target space is done by using
these parameters in the conversion function

F(xt) =
M∑
i=1

P (Ci|xt)
[
νi + ΓiΣ−1

i (xt − µi)
]

(2)

where ν and Γ are related to the mean target and the
cross-covariance matrix of the source and target vectors. The
parameters of the conversion function are determined by
minimization of the total quadratic spectral distortion between

the converted envelopes and the target envelopes:

ε =
N∑

t=1

||yt −F(xt)||2. (3)

For details on the minimization see [1].
b) Conditional Vector Quantization: The second method

for voice conversion applies a Conditional Vector Quantization
as presented in [2]. In contrast to the first method we get hard
cluster boundaries by using a standard LBG clustering for the
source space giving us a codebook Cx ≡ {ẋi , i = 1...m}.
Then the mapping function finds for each of these clusters a
different codebook Cy with k entries for each source space
cluster. The criterion function minimized in this case is the
approximation to the average distortion D given by

D ≈
M∑

m=1

[
1
N

N∑
n=1

p(ẋm|xn)
K∑

k=1

p(ẏm,k|ẋm,yn)d(yn, ẏm,k)

]
(4)

The conditional probability p(ẋm|xn) is the association prob-
ability relating the input vector xn with codevector ẋm, while
the association probability p(ẏm,k|ẋm,yn) relates the output
vector yn with the codevector ẏm,k of the m-th subcodebook
of Cy .

The mapping for a source feature vector xi is done by
choosing the nearest source space cluster using Euclidean
distance. This provides us with a subcodebook of Cy with K
entries. For an utterance of length N we construct a lattice of
K × N elements and we find a minimum weight path using
again Euclidean distance from frame to frame providing us
with a sequence of N vectors in Y .

C. Frame selection algorithm

Once the features of the frames of the original speaker have
been converted using either the GMM mapping or the CVQ-
based conversion, the converted features are used as inputs of
the unit-selection algorithm.

This algorithm is basically working like any TTS unit-
selection system. However, state-of-the-art TTS systems based
on unit-selection usually deal with diphones, phones or parts
of phones [3] while our algorithm uses smaller units : 32 ms
frames (with a constant shift of 8 ms between each frame).

For this part of the system, we use the complete target
speech database (as opposed to the mapping system, which
only used the aligned sub-part of it; see Section IV for details
on the databases). Among all the frames in the target database
(cmu us awb arctic ’95), we select a sequence of frames Ÿ =
[ÿ(1)... ÿ(t)... ÿ(T )] that best matches the sequence of frames
output by the mapping function: Ẏ = [ẏ(1)... ẏ(t)... ẏ(T )].
This selection is made using the Viterbi algorithm [4], [5] to
minimize the global distance between Ẏ and Ÿ . This global
distance is a combination of target and concatenation distances
which are detailed in the next three subsections. This approach
is very similar to that developed in Suenderman et al. [6], with
the difference that in our approach the target sequence for the
frame selection algorithm is the mapped sequence Ẏ , while
Suenderman et al. use the input sequence X as target.”



1) Clustering, clusters and n-best selection: In order to
reduce the computation time, the database has been divided
into 256 clusters using the LBG method [7]. When we use
only the parallel recordings as a database, there are about 300
frames per cluster and each cluster has a centroid which is
a vector of the mean values of the features of the frames
inside the cluster. Therefore, for each set of features ẏ(t), the
algorithm first selects the cluster with the closest centroid.
The closeness of the centroid is measured using a weighted
euclidean distance

closest centroid = argmin
c=1,...,C

N∑
i=1

wi ·
(
ẏ
(t)
i − ÿ

(c)
i

)2

, (5)

where N is the dimension of the feature vectors, ẏ
(t)
i is the

ith component of the feature vector produced by the mapping
function at time t, ÿ

(c)
i is the ith component of the cth centroid

of the database and wi is the weighting factor associated to
that ith component.

Then, for each frame (1, ...,mc, ...,Mc) in the chosen cluster
c, the weighted euclidean distance between the feature vectors
ẏ(t) and ÿ(mc) is computed. This distance will be used as the
target distance tdist by the Viterbi algorithm:

tdist(t,mc) =
N∑

i=1

wi ·
(
ẏ
(t)
i − ÿ

(mc)
i

)2

(6)

Finally, if the n-best option is activated, only the NBEST
closest ÿ(mc) to the ẏ(t) are selected as candidates for Viterbi.

2) Concatenation distance: During the induction step, the
Viterbi algorithm has to compute the cost of all the transitions
from each feature vector ÿ(mc(t)), selected at time instant t, to
each vector ÿ(mc(t+1)), selected at time t + 1. Again, these
concatenation costs (cdist) are measured using a weighted
euclidean distance:

cdist(mc(t),mc(t+1)) =
N∑

i=1

wi ·
(
ÿ
(mc(t+1))

i − ÿ
(mc(t))

i

)2

(7)

This step is the most time-consuming part of the Viterbi
algorithm and is the reason why clusters and n-best selections
are so important. They reduce the transition possibilities but
in return they dramatically increase the search speed without
actually nor notably damaging the final output.

At this point, one important remark has to be done :
the concatenation distance should advantage the selection of
neighbour frames to reduce discontinuities during the synthesis
of speech. Therefore, before computing the distance between
two feature vectors, the process checks whether the corre-
sponding frames are consecutive in a wav file of the database.
In case they are, the distance is automatically set to zero.

3) Implementation: The very first tests were made using
Matlab, however it early appeared that this was very time-
consuming. In order to reduce the duration of the Viterbi
algorithm, the whole program has been rewritten in C so that
it could be compiled in a mex-file. Mex-files are pre-compiled
libraries used by Matlab as any other Matlab script. The
difference with usual scripts is that the functions implemented
in these libraries are way faster (see Annex V-G in p. 11).

Fig. 3. Block diagram of the selection method using a projection of the
mapped source MFCCs vectors into the target MFCCs space.

D. Speech synthesis

As a result of the previous steps (mapping, possibly fol-
lowed by a frame-selection algorithm as described in II-C),
we obtained a sequence of converted (target) frames that best
represent the voice transformation of a given source utterance.
The next step is to generate the converted speech resulting
from this sequence. Although it is possible to regenerate the
speech from the MFCC parameters [8], the resulting quality
is not acceptable for the task, since the parametrization is
not a lossless procedure. In particular, the phase information
is completely lost and must be estimated to provide the
synthetic voice with a higher degree of naturalness. In this
subsection, we first produce ÿ(n) using the source speaker
excitation as input of LPC filters modelling the target speech.
We then examine the production of ÿ(n) by overlap-adding
speech frames (i.e., samples) extracted directly from the target
database.

1) LP-based speech synthesis, without Viterbi: This method
is illustrated in fig. 3. The speech signal is segmented into
overlapping frames and MFCCs are computed for each frame
(vectors X in the figure). The mapping function (continuous
probabilistic mapping function based on GMM and described
earlier) computes transformed MFCCs vectors (Ẏ ). Each Ẏ is
then compared to all target database MFCC vectors in order
to get the closest match Ÿ . For each target MFCC vector,
we also have memorized the corresponding auto-regressive
coefficients. Thus, for each frame of the source speaker, we
can get the corresponding autoregressive coefficients for the
target speaker.

In parallel, for each source frame, we run a LPC analysis
to extract the LP residual of the source. Finally, to synthesize
converted speech, we use this residual as input excitation for
the LPC synthesis filter with the auto-regressive coefficients
obtained.

We know that to keep the excitation of the source is not an
ideal solution since it still keeps information from the source.
To approach a bit more the target voice, a pitch modification
can be done on the converted speech by analysing the pitch
of the source and of the target.

2) LP-based speech synthesis, with Viterbi: The voice
conversion system by LPC analysis and synthesis using the
Viterbi algorithm is detailed in fig. 4. As in the previous
method, the mapping function transforms MFCCs from the
source speech signal (X) into Ẏ MFCC vectors. For each
frame of the processed sentence, the Viterbi algorithm (that has
been previously described) gives as output an MFCC vector



Fig. 4. Block diagram of the selection method using the Viterbi algorithm.

taken directly from the MFCC vectors of the target speech
database. It also provides the index of the sentence the frame
chosen comes from and the time stamp of the centre of the
frame. From this information, one extracts the frame from its
wave file and computes an LPC analysis to get the new AR
coefficients that will be used for the synthesis.

In comparison with the previous method, one can expect an
improvement in the choice of the frames in the target database,
since the Viterbi algorithm takes the concatenation cost into
account (and not only the target cost).

3) Speech to Speech synthesis: Instead of trying to produce
the converted speech samples by LPC analysis-synthesis, as in
the previous subsection, it is also possible to deliver speech
by overlap-adding speech frames taken directly from the target
speech files.

Here we use the natural target speech frames associated to
each MFCC vector. The problem then reduces to combining
these frames in order to achieve the highest quality possible.
We use a simple OverLap-and-Add (OLA) procedure on
the sequence of frames. However, there may be important
problems associated to the discontinuities between the frames.
To partially overcome this drawback, we apply a correction on
the frame positions, based on the local maximization of the
correlation between the already generated synthetic speech and
each new frame, as used in WSOLA [9].

III. FACIAL EXPRESSION ANALYSIS, MAPPING, AND
SYNTHESIS FOR FACE ANIMATION

Facial expression analysis and synthesis techniques have
received increasing interest in recent years. Numerous new
applications can be found, for instance in the areas of low bit-
rate communication or in the film industry for animating 3D
characters.

In this project, we are interested in head-and-shoulder video
sequences, which we use to control the lip, eye, eyebrow,
and head movements of a 3D talking head. First a 3D head
model of the target is created (basically any 3D head will do,
including a cartoon-like head). This step typically involves
the extraction of Facial Definition Parameters (FDPs) from
photographs of the target speaker. The system then analyzes
the source video sequences and estimates 3D motion and facial
expressions using the 3D head model information. The expres-
sions are represented by a set of facial animation parameters
(FAPs) which are part of the MPEG4 standard [10] (just as
FDPs). The target 3D head model is then deformed according
to the FAPs of the source, and new frames are synthesized
using computer graphics techniques. Good examples of such

Fig. 5. An ellipse is fitted to skin blob and optical flow vectors are calculated
in this region

video-based avatar control can be found in the work of
Eisert [11].

A. Face Analysis

Face analysis process mainly consists of three tasks: de-
tecting and tracking face region, extracting features for facial
gestures from the detected face region, and tracking these
features throughout the source video. In this framework,
automatic face detection and computation of 8 quadratic global
head motion parameters is done according to [12]. Figure 5
shows an ellipse fitted to the detected face region and optical
vectors calculated between two consecutive frames that will
be used in the process of computing quadratic global head
motion parameters.

The global head motion parameters are used to
• estimate the position of head in the next frame,
• approximate the 3D movement of the head and
• calculate the canonical displacement vectors of facial

feature points over the face region.
Once the face position is known, a set of useful feature

points for face components, which are lips, eyes, and eyebrows
in this scenario, are defined and tracked. For this purpose,
Active Appearance Models (AAM) approach that was intro-
duced by Cootes, Edwards and Taylor, is used as a means of
modeling and tracking face components [13], [14], [15], [16].

AAM is, in essence, a combination of ideas from Eigen-
face Models [17], Point Distribution Models [18], and Ac-
tive Shape Models [19] and has its roots in model-based
approaches towards image interpretation named deformable
template models where a deformable template model can be
characterized as a model which, under an implicit or explicit
optimization criterion, deforms a shape to match a known
object in a given image [20]. Consequently, AAMs establish
a compact parametrization of shape and texture, as learned
from a representative training set. Thus, AAMs require model
training phase before they are used to process unseen images.
In this training phase, the AAM learns a linear model of the



correlation between parameter displacements and the induced
residuals.

During search for a face in a new frame, residuals are
iteratively measured and used to correct the current parameters
with respect to the main model, leading to a better fit. After
a few iterations, a good overall match is obtained [15] .
Applying this search method to each video frame using the
model obtained after training will constitute the tracking part
of the task. Figure 6 demonstrates a sequence of consecutive
frames as a result of the tracking task. The output of the
tracking process will be the set of 2D positions of key points
of the face components for each frame which will be input to
the facial movement mapping module.

B. Facial Movement Mapping

Since the previous module tracks pixel locations of the key
feature points of the face components and the next module will
synthesize a 3D head animation using an avatar model based
on MPEG-4 parameters, the mapping function will compute
MPEG-4 parameters from a set of 2D image locations.

MPEG-4 Facial Animation defines two sets of parameters:
the Facial Definition Parameter (FDP) set and the Facial Ani-
mation Parameter (FAP) set [21], [22]. These two sets provide
a common framework for animating a 3D face deformable
mesh model with the help of high-level and low-level facial
actions, closely related to facial muscle movements.

The first set of parameters, FDPs, is used to define feature
points that are basic components in 3D face deformable
meshes, represented by a 3D set of vertices. The movements
of these vertices drive the deformations to be applied to the
model to animate the desired facial expressions. 84 feature
points on morphological places of the neutral head model are
defined by MPEG-4 Facial Animation, as shown in figure 7.

The FDPs mainly serve for specifying how the face
mesh will deform according to the transformation parameters
(FAPs).

The second set of parameters, FAPs, on the other hand,
consists of a collection of animation parameters that modify
the positions of the previously defined feature points and,
thus, can be used to create or change the model for each
of the desired facial expressions. There are 68 FAPs that
can be grouped in two categories: high-level and low-level
parameters. The number of high-level parameters is only two.
The first one is visemes, which are the visual equivalents to
phonemes in speech. This parameter defines the mouth shapes
produced by the different possible phonemes. The second
high-level parameter corresponds to facial expressions and can
take 6 values, one for each of the 6 archetypal emotions (anger,
disgust, fear, joy, sadness and surprise). The remaining 66 low-
level parameters are used for basic deformations applied to
specific morphological points on the face, like the top middle
outer-lip, the bottom right eyelid, etc... Because FAPs are
universal parameters and independent from the head model
geometry, MPEG-4 Facial Animation defines a set of 6 units,
the Facial Animation Parameter Units (FAPU), to normalize
the FAPs and make them independent of the overall face
geometry. Prior to animation of a virtual face, the FAPs have to

Fig. 7. Feature points are used to define the shape of a face model and the
facial animation parameters are defined by motion of some of these feature
points

be normalized by their corresponding FAPUs. As depicted in
figure below, the FAPUs are defined as fractions of distances
between key facial features (i.e. eye-to-eye distance, angular
unit, etc.).

At this point, 8 quadratic global motion parameters are used
to separate the local movements of key feature points from the
global movement of head, since input value for each FAP is
independent from other FAPs.

One can think about this scenario: if head rotates around its
horizontal axis by 45 degrees, mouth will also rotate with head.
In the meantime, mouth just opens a little bit, meaning that
upper and lower lips move away from each other. And now,
if one looks at the big picture, middle point of upper lip will
seem to be moving neither just horizontally nor just vertically,
but along an inclined line in between. If the deformation value
for the middle point of the upper lip is calculated directly by
taking the difference of the 2D pixel locations between two
consecutive frames, the final value will obviously be a wrong
input for the animation. Instead of this, having (x(t), y(t)) in
frame t, for frame t+1, one can estimate (x̂(t+1), ŷ(t+1))
using global motion parameters (a1, . . . , a8) and (x(t), y(t)).



Fig. 6. Example image sequence that demonstrates the performance of tracking by AAMs

Fig. 8. Some of the feature points are used to define FAP units when the
face model is in its neutral state. Fractions of distances between the marked
key features are used to define FAPUs

Then, the difference between the measurement (x(t+1), y(t+
1)) and estimate (x̂(t + 1), ŷ(t + 1)) can be considered as the
actual deformation of the model for the lips. Likewise, all the
values for the used FAPs can be calculated in a similar fashion.

Besides calculating the FAP values for different face com-
ponents, FAP values for the head movement itself have to
be computed as three rotation angles around the three axes
of the head. This is not an easy task since going from 2D
world to the 3D world with only one angle of view requires
sophisticated approximations, where there is no chance for
accurate results at all. There are model-based pose estimation
approaches using ellipsoidal models [23], or downhill simplex
optimization method and the combination of motion and
texture features [24], [25].

However, even though it is not as accurate as other methods,
it is also possible to simply approximate the rotation angles by
assuming that the head center moves around over the surface of
a sphere that is centered at the top of the spinal cord. When the
displacement of head is projected onto this sphere, the angles
of head rotation can be estimated approximately.

IV. EXPERIMENTS AND RESULTS

In order to design the application depicted in Fig. 1, we
needed to choose a source and target speaker, make sure we



could have access to a large amount of speech from the target
(for the speech synthesis module), of a reasonable amount
of aligned speech data for source and target (for the voice
mapping module), and of some test speech+video data from
the source (in order to test the complete system). We chose to
use the CMU-ARCTIC databases as target speech [26]. This
database was designed specifically for building unit-selection-
based TTS systems. It is composed of eight voices, speaking
1150 sentences each (the same sentences, chosen to provide
a phonetically balanced corpus). We thus decided to record
an audiovisual complementary database, for use as the source
data.

The eNTERFACE06 ARCTIC database we have created is
composed of 199 sentences, spoken by one male speaker, and
uniformly sampled from the CMU ARCTIC database [26]. For
each sentence, an .txt, a .avi, and a .wav files are available. The
.avi file contains images with 320x240 pixels, 30 frames per
second, of the speaker pronouncing the sentence (Fs=44100
Hz). The .wav file contains the same sound recording as in
the .avi file, but resampled to 16 kHz.

The database was recorded using a standard mini-DV digital
video camera. The recording of the speech signal was realized
through the use of a high-quality microphone, specially con-
ceived for speech recordings. The microphone was positioned
roughly 30cm below the subject’s mouth, outside the camera
view.

The background consisted of a monochromatic dark green
panel that covered the entire area behind the subject, to allow
easier face detection and tracking. Natural lighting was used,
so that some slight illumination variation can be encountered
among the files (Fig. 2).

The recordings were made using the NannyRecord tool
provided by UPC Barcelona, which makes it possible for
the speaker to hear the sentence it has to pronounce twice
before recording it. The source speaker used for the recordings
were the “awb” speaker of CMU ARCTIC. The eNTER-
FACE06 ARCTIC speaker was asked to keep the prosody
(timing, pitch movements) of the source, while using his own
acoustic realization of phonemes, and of course, his voice
(i.e., not trying to imitate the target voice). This particular
setting has made it possible for the eNTERFACE ARCTIC
recordings to be pretty much aligned with the corresponding
CMU ARCTIC recordings.

Following the standard approach, the parallel database was
further divided into three subsets:

• development set, consisting of 188 sentences (of the total
198), used during the training phase of the different
algorithms (alignment, voice mapping, etc.),

• validation set, used to avoid overfitting during the re-
finement of the model parameters (number of clusters,
GMMs, etc.),

• evaluation set, used to obtain the results of the multi-
modal conversion.

It is worth mentioning that this last subset (evaluation) was not
present in any of the stages of the training. The results we have
obtained can therefore be expected to generalize smoothly to
any new data.
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Fig. 10. Block diagram show the different alternatives for the mapping
estimation and for the frame selection.

The features computed from the signals were either 13 or 20
MFCC’s and their first and second derivatives; the frame rate
was chosen to be 8ms. For the computation of the derivatives
we relied on an implementation by Dan Ellis2 and the other
signal processing steps were taken from the MA toolbox
by Elias Pampalk3. We also computed estimations of the
fundamental frequency by using functionalities provided by
the Praat software4. For fundamental frequency and for signal
energy we can also provide first and second derivatives so that
for each frame the full set of features was: 20 MFCC’s, 20
∆MFCC’s, 20 ∆∆MFCC’s, f0, ∆f0, ∆∆f0, energy, ∆energy
and ∆∆energy resulting in a vector of 66 dimensions.

In figure 10, we can see the different alternatives we have
implemented for each of the blocks.

A. Alignment and voice mapping

After the first alignment the Euclidean distance (L2 norm)
between the source and the target MFCCs was: 1210.23. Then
the GMM-based mapping was applied and the same norm
was measured on the Transformed data and the Target Data:
604.35 (improvement: 50.08%). Then the Source data were
transformed and a new alignment was performed. Using the
new aligned data, a new mapping function was estimated
and again the Source data were transformed, and again the
L2 norm between the transformed data and the Target data
was measured (397.63). The process was repeated and a new
measurement of the performance of the mapping function was
measured using the L2 norm (378.18).

Without iterations, we achieve a 50% reduction of distance
between the target and the source data. This percentage
should be higher, and provides also an information on the
difference between the two speakers, and/or of the differences
in the recording conditions. After some iteration we arrive to
stable mapping function, with an improvement over the initial
distance between the source and the target data of: 68.76%.
Figure 11 shows the reduction of the distortion due to the
iteration of the algorithm.

B. On clustering parameters

The incremental alignment procedure used a Gaussian Mix-
ture Model of the source space with 128 components. This
parameter remained fixed throughout the experiments. It had
influence on the construction of the aligned data as well as on
the mapping from source to target space, as this mapping is

2http://labrosa.ee.columbia.edu/matlab/rastamat/deltas.m
3http://www.ofai.at/˜elias.pampalk/ma/
4http://www.fon.hum.uva.nl/praat/



Fig. 9. Facial excerpts from the eNTERFACE06 ARCTIC database.

0 1 2 3
300

400

500

600

700

800

900

1000

1100

1200

1300

Distortion: l
2
 norm on MFCC

Fig. 11. Euclidean distance between the transformed data and the target
data. Stability is reached after three iterations, with on overall improvement
of 86%.

TABLE I
MEAN SIGNAL TO NOISE RATIO FOR VALIDATION FILE FRAMES MAPPED

TO SOURCE SPACE CLUSTERS

Number of Clusters SNR
256 11.58 dB
512 12.04 dB

1024 12.46 dB

following equation 2 and so depends as well on the number
of mixture components.

For the computation of the CVQ-based mapping the source
space had to be clustered. Table I shows the average logarith-
mic signal to noise ratios for our five validation files. We can
see that increasing the number of clusters brings improvements
of about 1 dB. For the Y |X codebook size eight was chosen,
so that we had eight candidates for the Ẏ to choose from using
the Viterbi algorithm.

C. Face animation

For our specific scenario, each frame in the training set
has been manually labeled with 72 landmarks by using the
AAM-API [27] software (freely available for non-commercial
use such as research and education). The image in figure 12
shows an example of an annotated image from the training
set.

In order to obtain an accurate mapping from the 2D pixel
locations to the MPEG-4 parameters, the annotation of the

Fig. 12. Example of a training image labelled with 72 landmark points

images in the training set should closely match the MPEG-4
FDPs. In this particular task, the mapping process includes
calculation of 6 facial animation parameters units (FAPUs),
besides 44 low-level FAPs. Figure 13 shows the face model
used in this work, already available in the XFace project.

We have found it necessary to smooth the calculated values
for animation, since the measurements in the tracking process
are noisy and small scale differences in the parameters for
the simulation process may have large effects in the resulting
animation. Kalman Filter was used for this purpose with a
state model consisting of positions and velocities of all the
key feature points on the face.

2cm
As a result of using the techniques described above, several

video files have been produced from the evaluation subset of
the database. These results are available for tests in the archive
of our project on the eNTERFACE06 website. We created
parallel videos showing source speaker and target avatar side-
by-side in order to evaluate the face detection and tracking
algorithm. As it can be seen in the videos, both algorithms
are able to provide accurate results (although they are very
sensitive to the tuning of the parameters, and in some cases
they result in unreliable estimations).

Utterances using the three speech generation techniques
previously explained (sec. II-D) have been generated. For
comparison purposes, we have also generated an English
voice for the Festival Speech Synthesis System using the full
CMU ARCTIC database (except the evaluation subset). The



Fig. 13. The face model available in the XFace is used to create the desired
animation

phonetic segmentation was performed automatically, and thus
the resulting voice contains errors that would require manual
correction. Informal tests show that the LPC-based methods
(secs. II-D.1 and II-D.2) produce more natural, continuous
sound speech, than the speech to speech synthesis method
(sec.II-D.3). However, the speaker identity of the converted
speech is closer in the later case to the target speaker. The
highest identification score was obtained by the Festival voice,
although the discontinuities due to the automatic segmentation
seriously affect the quality of the synthetic speech.

V. CONCLUSIONS

In this paper we described a multimodal speaker conversion
system, based on the simultaneous use of facial animation
detection, 3D talking face synthesis, and voice conversion. A
typical and important feature of the problem we have treated is
that a large amount of speech data is assumed to be available
for the target speaker.

During this work, two techniques have been studied for the
mapping of the source voice to the target voice: Gaussian
Mixture Models (GMMs) and Condition Vector Quantization
(CVQ). Several alternatives for the synthesis block have been
implemented, without achieving acceptable quality. Prelimi-
nary analysis of the results indicate that discontinuities in the
phase are causing major distortion in the synthetic speech.
Possible solutions and directions for future research are given
below.

A. Enhanced multimodal approach

Of the two conversion problems mentioned in the intro-
duction of this paper (voice and facial movements), we have

mostly focused on the first, and assumed the second merely
reduced to a scaling of source to target movements. Clearly,
each human face has its own ways of producing speech, so
that the facial movement conversion step could still be widely
enhanced by submitting it to a more complex mapping stage.

One immediately notices that the approach followed here
is only weakly multimodal: it actually uses late multimodal
fusion. One of the obvious ideas that could be exploited in the
future is that of using speech for face movement detection,
and possibly face movements for helping voice mapping. A
further step could then be to study simultaneous face and
voice conversion. This would require having video data for
the target (which we did not have here). The speech-to-speech
component of our project could then be made multimodal in
essence, by using facial movements in the definition of target
and concatenation costs, for instance.

B. Weighted Euclidean distance
Until now, we have not actually used the weighted Euclidean

distance, instead we simply used the basic Euclidean distance.
However methods exist that allow the computation of optimal
weights for such a distance. A first future improvement of our
results could be to apply one of those methods.

Another way to improve this part of the system could be
to compute the target and concatenation cost with other mea-
surements such as Mahalanobis, Kullback-Leibler or Itakura
distance.

C. F0 mapping and continuity
Presently, the target speech is synthesized using the residual

excitation from the source speaker. Therefore the utterance has
the same prosody than the source. This is a major drawback
because we think this is the main reason why the final output
sounds as a third speaker situated between the source and the
target.

The next step in the development of an efficient open
source voice conversion system should be to create a mapping
function between the two speaker’s prosodies.

D. Phase continuity
In order to reduce the influence of the source speaker’s

voice in the final result, we would like not to use his residual
excitation anymore. Indeed, this residual still contains a lot of
information about him.

The OLA solution proposed in section II-D.3 can be a solu-
tion. However, this will introduce a lot of phase discontinuity
(aside from the energy and pitch discontinuities which can be
handled more easily). We have found no elegant solution to
this problem, which requires further study

E. Pitch synchronous processing
A different approach could be to use a PSOLA algorithm to

achieve the resynthesis. If PSOLA is used in the synthesis step,
then the absolute value of the pitch is of lesser importance as
a target for the Viterbi alignment, however its delta and delta-
delta are still important. Indeed PSOLA can change the overall
pitch easily, but delivers lower quality speech when the shape
of the pitch curve is modified.



F. 3D Head Synthesis

While we have completed the face detection, movement
tracking, and 2D to 3D mapping of this project, we did
not have time to work on the 3D head synthesis aspects. In
this part, the main task is to convert the set of parameters
into visual animations. Animations are created using XFace
interface which is an MPEG-4 based open source toolkit
for 3D facial animation, developed by Balci [28]. This is
a straightforward process: once the FAP values have been
computed, the XFace editor (or any other suitable player) can
directly synthesize them (given that the parameters file format
is correct).

G. Software notes

As a result of this project, the following resources are
available:

• eNTERFACE06 arctic database (video and audio). 199
sentences sampled from the CMU ARCTIC database 5.
The video part is recorded in avi files (320x240 pix-
els), 30 frames per second, unencoded. The audio part
is recorded in wav files, 16kHz, 16 bits per sample,
unencoded.

• Conditional Vector Quantization algorithm (Matlab).
• Clustering via K-means algorithm.
• Viterbi algorithm (Matlab and C++)
• OLA implementations, with optional correlation-based

correction of the window positions.
• Automatic calculation of global head motion parameters.
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