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Abstract— Recent advances in new technologies offer a large
range of innovative instruments for designing and processing
sounds. This paper reports on the results of a project that
took place during the eNTERFACE06 summer workshop in
Dubrovnik, Croatia. During four weeks, researchers from the
fields of brain-computer interfaces and sound synthesis worked
together to explore multiple ways of mapping analysed physiolog-
ical signals to sound and image synthesis parameters in order to
build biologically-driven musical instruments. A reusable flexible
framework for bio-musical applications has been developed and
validated using three experimental prototypes, from whence
emerged some worthwhile perspectives on future research.

Index Terms— EEG, EMG, brain-computer interfaces, digital
musical instruments, mapping

I. I NTRODUCTION

M USIC and more generally artistic creation has often
drawn inspiration from the possibilities offered by

technology. For example, the invention of the piano was a
key event in the emergence of romantic music. More recently,
the electric guitar and synthesizer have allowed elements of
Jazz to move towards Pop Music. Digital signal processing
and multimedia computers have enabled the creation of an
overwhelming gamut of new sounds. More recently, work has
begun to discover ways to control these new sounds with the
ultimate goal of creating new musical instruments which are
playable in real-time.

The present contribution is focused on the development of
new musical instruments activated by the electrical signals of
the brain (EEG) and of the muscles (EMG). We are exploring
features of bio-signals by mapping them to parameters of
computer-generated sounds. This work is the continuation of a
project initiated last year during the first eNTERFACE work-
shop in Mons, Belgium [1] [2]. In our previous work we used
inverse methods and left/right cortical activity differentiation
- as in classical Brain to Computer Interfaces (BCI) [3] - to
design the mapping between physiological signals and sound
synthesis parameters. We felt, however, that the ‘musification’
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of biological signals could benefit by using the richness of
the raw brain and muscle signals rather than just relying
on the results of analyses. Hence, we took the opportunity
of this workshop to explore new fission/fusion strategies by
conducting three experiments:

• The first application was the sonification of EEG signals,
using a vocal model, which could be either used as a
musical instrument or as a diagnostic tool

• The second experiment was more directed to musical
applications and interactive performance, and is aimed
to generating visual and sonic textures controlled by the
results of EEG spectral analysis.

• The last application was a tentative attempt to extend the
hyper-instrument paradigm by building a physiologically
enhanced didgeridoo that relies on wearable sensor tech-
nology [4].

This report is composed of five main sections: a history
of music and sonification controlled by biological signals;
a theoretical framework which exposits the fission/fusion of
biological signals in musical applications; a description of the
hardware and software architecture of our platform dedicated
to musification of biological signals; a section which details
the different EEG analysis methods we have implemented;
and finally detailed descriptions of the experiments with some
possibilities for improvement for each.

II. H ISTORY AND THEORY OFSONIFICATION OF

BIOLOGICAL SIGNALS

Whereas the use of biological signals to control music sys-
tems has a long and rich history dating back at least 40 years
[5], the contemporary notion of sonification of biological data
for auditory display is relatively recent, the first articulated
writings beginning to appear around 1994 [6]. Sonifications
as evidence or as objects of scientific knowledge also present
fascinating opportunities to interrogate notions of scientific
truth and ontology. In fact, the practice of using sound as
a tool for medical diagnosis for example, dates back more
than 150 years to the development of the stethoscope by René
Laennec [7] and the attendant practice of mediate auscultation.
As listening to the body is one of the most basic skills in a
standard medical education, trained doctors are thus highly
sensitive to sound and its implications for diagnosis. Simulta-
neously, over the past 150 years or so, scientific measurement
equipment has become increasingly sophisticated and precise.
The possibility of making highly precise measurements of
phenomena has - until recently however - been almost ex-
clusively destined for visual display. That is, the results of



these sophisticated measurements has been, to a very large
extent, primarily expressed in visual terms: as graphs, line
traces, charts, histograms, waterfall charts etc., either on paper
or some similar support, or on a luminous display such as a
CRT or TFT computer screen. Recently, the notion of auditory
display of scientific or other information has become current.
Auditory display has several advantages over visual display
especially for critical applications largely due to the ways in
which our auditory perceptual apparatus passes information
to the brain. By using salient characteristics of sound, such as
rhythm, duration, pitch, timbre and harmonic/enharmonic con-
tent, it is possible to rapidly and accurately express complex,
multimodal information in a manner which can be quickly
and accurately grasped by a trained listener. Our auditory
apparatus is capable of distinguishing very subtle differences
in simultaneous, complex auditory streams and it can do
this very quickly and accurately [8]. Work has already been
done in the sonification of biological signals such as EEG
- notably by Gottfried Meyer-Kress and his early work in
EEG sonification - which has been furthered by a workshop at
ICAD2004 entitled ”Listening to the Mind Listening” and even
more recently by a workshop and paper given at ICAD2006.
In a related field, Mark Ballora did pioneering work in the
sonification of the cardiac rhythms related to the diagnosis of
conditions such as sleep apnea [9]. In most of the preceding
cases, however, the sonifications were performed ”offline”, that
is, not in real-time. The goal of this part of the project is to
develop a real-time system for sonification of biological data.
Previous efforts along these lines have led to very specific
solutions with particular hardware and software components
which have proved hard to re-use and not sufficiently flexible
for diverse applications. Our goal, thus, is to begin work
upon a flexible, re-usable, open-source framework for the
generalized sonification of biological signals. This platform
would provide a stable, re-usable, flexible and comprehensive
environment for the sonification of human biological data for
auditory display. This display would be useful for doctors,
scientists, researchers and clinicians in the study and diagnosis
of normal and abnormal indicators. Much as this is primarily
a tool for scientific research, it is also envisioned as a useful
tool for music technologists, composers and performers in the
realisation of musical forms which are driven by measured
biological phenomena. It is felt that a stable platform for such
musical research is as useful in the musical sphere as it is in
the scientific one. In fact, an historical survey of biologically
driven music, such as brainwave music, shows periods of
intense, productive activity followed by quiescent lulls where
very little happens. It is felt that these lulls are due in part to
a lack of appropriate tools and techniques for consistent and
repeatable musical realisation and thus, little opportunity for
practices and mastery of bio-instruments such as brainwave
music.

III. F ISSION AND FUSION OF BIO-SIGNALS

A. Our proposed framework

We proposed to model the design of musical instruments
or sonifications as a fission-fusion process. Our theoretical
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Fig. 1. Framework for the design of biologically-driven musical instruments

framework is shown in Fig. 1. The central issue is the fission
from each of the given input modalities (EEG and/or EMG in
this case) into salient features channels. These features chan-
nels are then fused into commands which activate different
aspects of the related sound and image synthesis processes.
The process of fission of commands into the output feature
channels which are then fused back into the global output
signal is also seen as part of the fission-fusion process.
This process can be likened to the attendant processes of
analysis and resynthesis which are so central to digital signal
processing.

B. Mapping

In the literature on digital musical instruments [10], the term
mapping refers to the transformations performed upon real-
time data received from controllers and sensors into control
parameters that drive sound synthesis processes. One of our
objectives during this workshop was to design consistent
mappings between biological signal features and sound syn-
thesis parameters in order to create biologically-driven musical
instruments and sonifications.

C. Usability measurements

The three systems will be improved based upon: assess-
ments of usability and aesthetics by musicians, aesthetic judge-
ments by audiences, and quality of discrimination between
relevant EEG patterns in the case of sonification for diagnostic
purposes.

IV. T HE PLATFORM ARCHITECTURE

A. Towards an open source system

Our aim in the long term is to produce an entirely open
source platform dedicated to the real-time analysis of EEG
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signals and other biosignals for musical applications. Since
our work is multidisciplinary it involves using resources from
different fields of study and thus different software packages
are needed. During this workshop we used Matlab for the
analysis of EEG signals and Max/Msp/Jitter for the sound
and image synthesis. We plan to shift our development toward
open source software like Octave [11], Python [12] and
PureData [13] in the future. In the following, we describe the
architecture of our system (Fig. 2) in a bottom-up way, from
hardware data acquisition to software implementation.

B. Hardware

1) EEG equipment:EEG signals are recorded with adti
[14] cap containing 18 electrodes located according to the
10/20 international positioning system. The signals are ampli-
fied with an biosignal amplifier provided bydti with a gain of
106 and a default sampling rate of 128Hz. Due to limitations
in real-time signal processing, we sampled at 64Hz. Once
captured, the data is then bandpass filtered between 0.5 and 30
Hz to remove extraneous signals.Cz was used as a reference
electrode whilePz was taken for the ground.

2) EMG equipment:For EMG signals, we worked with
the same equipment but changed the gain to 1000 since EMG
signals have much larger amplitudes than EEGs. Disposable
electrodes were used, 3 per muscle, with one as a reference
and placed near a bone (i.e. elbow or knee), a second was
posed along the muscle (belly-bone junction), the third, taken
as ground, was via a conductive bracelet worn by the user.

C. Software

Our platform is currently implemented via four software
packages running on two computers which manage the specific
tasks required by the global application :

1) MedicalStudio-EEGToolbox:Acquisition and visualisa-
tion is done using EEGToolbox, a plugin written in C++ for
MedicalStudio [15], an open source software platform for
medical data analysis and display which runs under Linux.
This toolbox saves the data and can also send it using UDP
to another computer running Simulink under Windows. The
connection between the biosignal amplifier and the computer
running Linux is made with a usb cable.

2) Matlab-Simulink: Matlab was chosen for easy code
generation. Although we had developed the previous year a
simulink program, we switched to Matlab in order to spare
a computer. This way, the acquisition and signal analysis is
made on the same Linux running computer. Simulink could
not be used because it suffers from different bugs under Linux
that makes it hard to use.

3) Max/Msp/Jitter[16]: : Max/MSP is a graphical develop-
ment environment dedicated to real-time interactive applica-
tions. In use worldwide for over fifteen years by performers,
composers or artists, Max/MSP is a combinaison of Max
software for the control of musical applications through MIDI
protocol, and MSP, an add-on package for Max enabling the
manipulation of digital audio signals in real-time. Jitter is an
other additionnal library for Max environment, offering a large
range of real-time image and video processing tools.

4) OpenSoundControl (OSC) : A link between Matlab and
MaxMsp: In order to transfer data between softwares, we
used the OSC protocol [17] which sits on top of the User
Datagram Protocol (UDP). It allows a fast and reliable data
exchange since we work in a local area network. Packets are
sent with a header containing the name of the corresponding
data as well as the size of the packet. This makes it very useful
since the receiving program can easily manage the arriving
packets. The maximum size for the packets is 65536 bytes
long. We were thus able to send the raw EEG signal and
many features computed with matlab to Max/Msp allowing a
maximum flexibility (An excerpt from the code is detailed in
App. I).

V. FISSION OF BIO-SIGNALS

A. Introduction

We worked with two different bio-signals, EEG and EMG.
We describe in this section how to operate a fission of these
signals in order to extract relevant features. Let us present
briefly these two kind of signals:
• The EEG signal is a rich and complex reflection of

neuronal electric activity that takes place in the brain.
Since the first electroencephalogram recording made by
Berger in 1929, different waves have been described
corresponding to several frequency bands. Although these
waves are well known, their frequencies and amplitudes
are not directly under subject’s control, but only reflects
very general states of the brain. Therefore, using a simple
frequency analysis as input to the sound synthesizer will



Fig. 3. Recorded EEG, a 13Hz alpha rythm can be observed. The user was
in a drowsy state after a heavy lunch and had taken an espresso

not allow enough controllability. Other, more complex
signal properties can reveal more useful. On an other
hand, EEGs have a very good time resolution of' 1ms
unbeaten by recent methods (fmri..). This property is very
valuable for the purpose of musical instrument control
and should be taken care of. Finally, since electrodes are
placed at different locations, it is important to take into
account the spatial information.

• The EMG signal is produced by the electrical potential
generated by muscle cells. The increase in contraction
strength of the muscle is associated with an increase in
the number of cells that produce electrical potentials (de-
polarisation), and hence an increase in signal amplitude.
This signal contains two main waves, a low frequency
wave that describes the movement, and a higher fre-
quency wave that includes more precise information on
the electrical activity of the muscles. Due to hardware
limitations, we focused on the the low frequency band
(i.e. the envelope of the signal). The higher frequencies
could be used in a further version of the project to take
advantage of their higher temporal resolution.

B. EEG fission according to frequency bands

We describe here the partition of the EEG into frequency
bands

• Delta (0.5-4 Hz): This wave has first been discovered by
W. Gray Walter in 1936 with a patient that had a tumor.
Thus in the awake, it is quite alarming to present the slow
characteristic waveform of the delta rythm. However,
for a sleeping person, high amplitude delta waves are
normally present in the EEG. For our application it
appears evident that this rythm will not be of great use
unless we create a composition for sleeping performers!

• Theta (4-8 Hz): Scientists still debate whereas theta
activity is relevant to an early drowsiness state or if it
reflects some kinds of mental activity. Nonetheless it is
a faster rythm than delta and could be linked to brain
activities such as memory [18], or can be modulated by
visual stimulation (ref).

• Alpha (8-12 Hz): Alpha rythm is a leading indicator of
subject’s relaxation. Alpha synchronization (leading to
amplitude increase) occurs in the absence of any visual

stimulation, as for example, when the user closes his eyes.
In contrast, any visual stimulation lead to posterior alpha
desynchronization. Therefore it is a good tool for our
application since it can be used as a switch. Alpha waves
could also be associated to conscious visual perception
[19].

• Beta (12-24 Hz): Extending over a large bandwidth, the
beta activity reflects intense activity such as listening,
taking decisions, or more generally, arousal. It is a
dominant rythm in the normal adult awake EEG.

• Mu rhythm: This rythm, as the alpha rythm is between 8
and 12 Hz but is specific to imaginary or real movements
[20]. It is located in the motor cortex and is contralateral
to the movement i.e. for a left hand movement, a desyn-
chronization will appear in the right hemisphere.

Let us recall that the frequencies given above are not strict
but subject dependent. The control of these waves by the
subject can only been achieved following extensive training.
As a consequence, it is difficult to produce a controllable EEG
driven musical instrument on the basis of the amplitudes of
these signals alone. However we can derive a few indicators
from a spectral analysis:

1) Frequency Values:A Fast Fourier Transform was used
to compute the frequency. We used a 1 sec window to compute
a 32 points transform

2) Spectral Entropy: The spectral entropy, a measure
widely used showing the complexity of a signal, is computed
in order to detect salient rhythms. It is given by:

Hsp = −
∑

f

pf ln(pf ) (1)

wherepf is the probability density function (PDF) that rep-
resents the normalization of the power given at frequencyf
regarding the total power spectrum:

pf =
sf∑
f sf

with f ∈ ℵ+ andf ≤ 32 (2)

3) Spectral Edge:The spectral edge is the frequency under
which 95% of the spectral energy can be found This value
gives an indication of where the signal is concentrated.

4) Asymmetry ratio: In order to detect when the user
makes left or right side movement, we use a very simple tool
that computes the normalized difference between the power
contained in the mu rythm of two electrodes located in the
left and right motor cortex (i.e.C3 andC4):

Γ[8−12Hz] =
C3,[8−12Hz] − C4,[8−12Hz]

C3,[8−12Hz] + C4,[8−12Hz]
(3)

This ratio has values between -1 and 1, the sign indicating the
side of the body that was moved

C. EEG fission according to signal spatialization

As mentionned above, taking into account the position of
the electrodes is extremely important in EEG analysis. Two
similar methods, the Common Spatial Subspace Decomposi-
tion (CSSD) [21] and the Common Spatial Patterns (CSP)
[22], extract information from the most relevant electrodes.



Fig. 4. Inverse Problem visualisation : The black dots are the location of
the sources

These methods are known to be the most accurate in the
BCI community. However they imply offline preprocessing
and low variability between sessions which in our case is
seen as a limitation. Indeed, our aim is to produce live music
in different environments thus rendering a training session
obsolete. An other method that is starting to gain success is
based on the principle that the EEG signals are generated by
sources (i.e. assemblies of neuronal cells that when combined
produce a sufficiently strong current that can be measured at
the surface of the scalp) and that the propagation of electrical
currents through brain tissues can be modeled with Maxwell’s
equations. Therefore using a model of the brain it is possible
to reconstruct the activity of sources and gain access to the
spatial location of brain processes. Besides, this method offers
a visualisation of the activity. Having described this method
in [1], we will briefly resume the main steps of this method:

1) Head Model:We used a four spheres head approxima-
tion based on [23] ,[24] and [25]. Each layer represent, the
brain itself, the cephalo-rachidian liquid, the cranial box and
the scalp. There are 400 dipoles (Fig. 4) distributed over the
cortex (the surface of the first sphere). As an approximation,
deep sources are not taken into account. The potential mea-
sured on then electrodes,φ, is linked to the value of them
sources,ϕ, according to the lead field matrixG and additionnal
noiseη:

φ = Gϕ + η (4)

The lead field matrix is computed once for a given head
model and remains constant further on. Knowingφ from the
recording, we wish to findϕ. Unfortunately this so-called
inverse problem is an ill-posed problem since the number of
unknowns is much greater than the data at hand. Following is
a short description of the inverse problem

2) Inverse Problem:Solving Eq. 4 can be done using a
bayesian formalism :

P (ϕ|φ) =
P (φ|ϕ)P (ϕ)

P (φ)
(5)

where:

• P (ϕ|φ) stands for thea posterioriprobability to have the
source distributionϕ matchingφ

• P (φ|ϕ) is the likelihood i.e the probability to have the
given data according to the sources. It depends on the
quality of the recording and on the head model

• P (ϕ) is the a priori knowledge we have about the
sources.

• P (φ) is a normalizing probability that can be neglected

Finding the best solution to the inverse problem comes down to
maximizing thea posterioriprobability. This can be achieved
in various ways as different methods have been proposed
during the past 15 years [26] [27]. We implemented the
LORETA algorithm because it gives a maximally smooth
solution.

3) Features: Four features are derived from the solution
of the inverse problem and are sent to the sound processing
unit. To compute these features, we divide the source space in
four subspace representing the frontal, occipital, left and right
sensori-motor parts of the brain. This decomposition is based
on the fact that the frontal zone is associated with memory and
cognitive processes while the occipital region is linked with
visualization. Left and right motor-cortex side are associated
with left and right limbs movement. This is a very simplistic
view of the brain but is adopted as a first approximation.

D. Further work : EEG fission in 3D

We discussed earlier the importance of taking into account
the spectral, spatial and temporal information of the EEG. We
studied some techniques of spectral information retrieval and
a technique to improve the spatial resolution. We could in
a future approach combine the inverse problem and spectral
methods. Another approach would be to work with spherical
harmonics using an interpolation of the electrodes on a half-
sphere. Finally, including temporal constraints in the IP could
improve the obtained solutions.

VI. EXPERIMENTS

A. Sonification (Vocalisation) of EEG

The current implementation of sonification uses a
source-filter voice synthesis model developed by Nicolas
D’Alessandro and others [28] which in this case has been
tuned to emulate the multi-phonic singing chants typically
produced by Tibetan Gyuto monks or by Tuvan traditional
folk singers. The voice synthesis model as delivered, exposes a
limited set of functionalities with given ranges. In the interests
of proper encapsulation and OO design, we respect these
givens and will work with them. In this case the controller
mappings used the F1-4 formant frequencies whilst the F0 was
not directly controlled. Additionally, parameters representing
“tension”, “hoarseness”, “chest/head balance” and “fry” were
also controllable. Any available mapped data source (alpha,
beta, theta, mu etc.) can be used as a controller for any of the
synthesis parameter. It was found that the formant frequencies
were best controlled by signals which do not change too
quickly or vary too greatly. A facility is available to control
the positioning of any generated sound source with respect
either to a stereo sound field or to a 5.1 quasi-surround sound
field.



Fig. 5. Vocal Tract Filter realised by Nicolas d’Alessandro et al. It
implements four formants controllable in gain, central frequency and Q.

Results: Due to the highly prototypical nature of this
platform, no extensive testing was done and it is thus not
possible to provide comprehensive analyses of the relative
success or failure or suitability of this platform for any current
intended usage. Test that were made did indicate that basic
functionality of modules and the software as a whole is
intact and operational yet many improvements in precision,
usability and flexibility are still lacking. Going forward it is
envisioned that these characteristics will be ameliorated so
that the platform will become a flexible, stable, consistent and
useful tool for scientists, medical professionals and musicians
in the future.

B. EEG driven audio-visual texture synthesizer

In this instrument we tried to link three modalities by
exploiting results of EEG frequency analysis to control both
visual and sonic textures synthesis modules (Fig. 6). This
approach aimed to provide a visual feedback to the per-
former/audience enabling a better understanding of the fis-
sion/fusion process. Practically, the image synthesis module
takes as input parameters data received from EEG analysis
module, whereas sound synthesis parameters are extracted
from both the output image and the results of EEG analysis.
This strategy of linking synthesis processes should enable a
strong correlation between resulting image and sound. Both
synthesis modules have been implemented in Max/MSP envi-
ronment, the image processing tasks relying on the specialized
additional library Jitter. Following sections give more details
on both image and sound synthesis modules.

1) Creation of the visual texture:The starting point of the
creation of the visual texture is a space/frequency representa-
tion of cerebral activity: each second the EEG analysis module
transmits to the visualization module a matrix containing

EEG Frequency 
Analysis module

Image synthesis 
module

Sound synthesis 
module

Jitter Max/MSP

Fig. 6. General scheme of the instrument

the energy in the 32 bands of the spectrum of the signals
measured by each of the 18 electrodes. A crossfading effect
between consecutive matrixes is then achieved allowing to
obtain a continuously and smoothly changing image. This
moving image is then distorted: firstly a linear interpolation is
done in order to blur the image. At this step of the process,
the resulting image is a grayscale texture derived from the
space/frequency representation of the EEG analysis (Fig. 7).
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Fig. 7. Creation of a grayscale textured image from the space/frequency
representation of brain activity

Then we apply a colorization process, based on color lookup
tables, to remap grayscale into colored image. Lookup tables,
also called transfer functions, are arrays of numbers where
an input number is ’looked up’ as an index in the table. The
number stored at that index is then retrieved to replace the
original number. In our case, we use lookup table to convert
a monochrome into RGB value. In grayscale image, low-
energy areas are represented in black and gradually whiten
when energy increases. Our colorization process modifies
the color associated to maximal energy, by defining a new
color scale that will map in the resulting image high values,
originally represented in white, to a new color defined by the
result of EEG analysis image. The choice of the color, called
C, associated to the maximum of energy, is driven by the
distribution of energy between the alpha, beta and theta bands
of the EEG signals. The three RGB components of this color,
CRed, CGreen and CBlue, are thus weighted by the level of
energyLα, Lβ , Lθ in the three frequency bands alpha, beta
and theta respectively (Fig. 8). We obtain by this way a direct
link between the color of the resulting image and the maximal
energy frequency band of the EEG analysis.

The color lookup table is refreshed as soon as new values
for alpha, beta, theta bands are received from EEG analysis
module, i.e. one time per second, The transfer function used
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Fig. 9. Textures obtained from the same grayscale texture using different
color transfer functions. Rightmost and leftmost images correspond to low
and high level of entropy of the signal respectively.

for image in Fig. 8 is linear, but it is also possible to use
non linear lookup tables, that give interesting effects on the
resulting image and allow to obtain quite different types of
visual textures, as shown in Fig. 9. In our instrument six
predefined color transfer functions were available, and the
choice among them was driven by entropy of the EEG signals,
which is an indicator of state of relaxation of the subject,
Mapping was done such a way that a dropping of the entropy
results a more contrasted image.

2) Translation in sonic texture:The translation of the visual
texture created from EEG analysis into sound is based on
one of the most popular technique of sound synthesis, the
subtractive synthesis, widely used in musical applications such
as analog synthesizers. The basic principle of subtractive
synthesis is the use of complex waveforms, rich in harmonic
or inharmonic information, which are then spectrally shaped
by filters bank. In subtractive synthesis, the spectral envelope
of the resulting sound is the product of the spectral envelope
of the source with the frequency response of the filters bank
(Fig. 10).

Here we used as audio source a pink noise, whose energy

a) Source (noise) b) Shape of the filter

X

c) Output sound Frequency (Hz)

Fig. 10. Principle of subtractive synthesis

is geometrically distributed in the spectrum (constant energy
per octave). The implementation of subtractive synthesis in
the Max-MSP environment is based on the fffb object (fast
fixed filter bank), that models a bank of 32 bandpass filters.
This object takes as input a list of 32 values controlling the
gain of each filter. In our instrument, this list is obtained from
the visual texture created from EEG analysis by the following
process (Fig. 11) : a sliding window extracts a sharp vertical
band of the image (step 1), whose values are stored in a 1-D
vector (step 2). This vector is then downsampled to obtain a
list of 32 values (step 3) that will be used to drive gains of three
filter banks (step 4). In order to musically enrich the resulting
sound, we placed three filters bank in parallel, that resonances
are differently distributed in the spectrum, implying each of
the filters bank to produce its proper and discriminable timbre.
Final synthesized sound is a mix of these three sounds whose
loudness are respectively controlled by the level of energy in
the alpha, beta and theta frequency bands extracted from EEG
analysis (step 5), in a similar way of the weighting of RGB
components of the final color in the colorization process of
the visual texture. This enables a strong correlation between
synthesized image and sound, both driven by the results of
EEG frequency analysis. Videos demonstrating this instrument
are available online [29].

3) Results and future works:One aim of this work was
to build a brain-computer interface linking image and sound
synthesis processes to EEG analysis. We reached this objective
by designing a subtractive synthesis instrument that spectral
envelop is extracted from a visual texture resulting of EEG
analysis. This approach enabled to establish a clear relation
between output image and sound. In the future some main
tracks of improvement should be investigated. Firstly it would
be interesting to modify the space/frequency representation
of brain activity that is the basis the creation of the visual
texture. Indeed, a spherical representation relying on the lo-
calization of the electrodes on the scalp would be closer to the
actual spatial brain activity. Concerning the image-to-sound
translation, other sound synthesis techniques should be tested,
such as additive or granular synthesis, in order to enhance the
correlation between the synthesized visual and sonic textures.
For this it would be interesting to exploit existing works in the
fields of image sonification and auditory display [30]. Finally,
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Fig. 11. Image-to-sound texture translation driven by EEG frequency analysis

we should keep working on the improvement of mapping
between EEG analysis features and synthesis parameters. In
this instrument, the user was actually not able to control the
resulting image and sound, mainly because data we interpret
as input parameters in the synthesis modules (spectral content
of EEG signals) are hardly controllable by the human. In order
to increase the playability of the instrument, it could be worth
to add in the mapping easily controllable parameters such as
EEG features linked to eye blinking. More generally the design
of a mapping between EEG analysis results and synthesis
parameters in such a brain-computer interface requires an
explorative and inventive approach that could only be reached
by intensive experimental sessions.

C. EMG enhanced didgeridoo

The third experiment we led during this workshop aimed
to design an EMG-enhanced didgeridoo. The didgeridoo is an
Australian traditional wind instrument, sometimes described
as a wooden trumpet or a drone pipe. Because it is made
up without keys, pitch produced by a didgeridoo is limited
in a quite sharp range of frequencies, directly related to the
dimensions of the instrument. In this experiment we tried to
exploit EMG captors measuring contraction of muscles on one
leg to enlarge the possibilities of the musician, especially in
extending the range of pitch produced by the didgeridoo.

Live didgeridoo EMG Analysis

Digital Audio Effects 
(pitch shifting, harmonizing, granulation) 

Enhanced Didgeridoo

Audio source
Control parameters : 

spectral entropy and centroid

Fig. 12. General scheme of the enhanced didgeridoo

This instrument was running on two computers, one man-
aging Medical Studio for the capture of EMG signal and
the other one running Max-MSP for the implementation of
digital audio effects. EMG signal, captured with Medical
studio, was transferred to Max/MSP, where spectrum centroid,
entropy and signal power around a frequency band of 8 Hz
were computed. These resulting signals were differentially
modulated by leg movements in such a way that the subject
was able to control each of them, more or less independently.
Two digital audio effects modules were thus designed: in the
first one, entropy of the EMG signal, which was the most
easily controllable parameter, was used to modify the cutoff
frequency of a bandpass filter applied on the didjeridoo’s
sound. Spectrum centroid controlled a very slight pitch shifting
(with a maximum ratio of 1.05) and power in the 8 Hz band
controlled the cutoff frequency of a bandpass filter which was
used in a feedback loop inside a granular synthesis process.
In the second audio effect module, we used entropy of EMG
signal to drive two simultaneous pitch shifting processes,
one moving downward and another one moving upward.
Videos demonstrating these experiments are available online
[31]. These quite simple experiments demonstrated the musi-
cal potential of EMG-enhanced musical instruments: indeed
mapping audio effects parameters with muscles contraction
seems to get their control very intuitive and expressive. In
the future we will pursue to investigate this field by testing
more complex configuration of EMG-enhanced instrument,
with multiple captors on several areas of human corpus (arms,
neck), providing an actual measure of the physical activity
of the musician. Similar experiments will be also carried out
with other musical instruments (clarinet, accordion), taking
into account the specificity of musical gestures associated to
each instrument for the design of captors configuration and
mapping strategy.

VII. C ONCLUSION AND FURTHER WORKS

Building on the experience gained during the eNTER-
FACE’05 workshop, we have explored new horizons in bio-
music. Last year we focused mainly on left and right hand
movements thus working with limited inputs to the sound
synthesis algorithms. Our current approach is to take max-
imum benefit of the richness of the EEG by extracting as
many independant features as possible. We have adapted our



architecture to enable multi-dimension data transfer between
Matlab and MaxMsp. More sophisticated mapping could then
be made under MaxMsp giving a higher correlation between
sound and EEG analysis. The gap between art and science was
filled by combining a relevant and aesthetic visual feedback.
However the question of controlling the instrument remains
open as the development of the interface itself did not leave
enough time for a necessary training and assessment step. This
underlines the amount of work left to achieve an instrument
that could be in the future the equal of traditionnal instruments.
We will focus in the future on two parts that seem important
to us. First the migration of the platform to an open source
software platform using OpentInterface will allow the sharing
of our results and perhaps trigger new partnerships. The second
and last step, but certainly not the least, will be to achieve
a better control of the instrument itself. This means many
training sessions over a long period of time. The authors
are dedicated to pursuing their goal of achieving an entirely
biological music.

APPENDIX I
OPEN SOUND CONTROL

In order to implement OSC, we use the freely available
tcp-udp-ip toolbox for Matlab. The pnet function allows to
create a packet and send data through a UDP connection. It
is possible to include different headers in the same packet.
For example, sending all the EEG raw information can be
done with the following code:

% head of the message
header = [’F1’,’F2’...]
for j=1:nbrElectrodes
pnet(udp,’write’,’/header(j,:)’);
% mandatory zero to finish the string
pnet(udp,’write’,uint8(0));
...
% comma to start the type tag
pnet(udp,’write’,’,’);
% number of float to write
for i=1:sizedata
pnet(udp,’write’,’f’);
...
% data to send
pnet(udp,’write’,single(data(i,j)));

The source code is available online on the enterface
website.

APPENDIX II
DISCUSSIONS ONBIO-MUSIC

1) The BIO-MUSIC Platform: The Bio-Music platform
(Fig. 13) is being prototyped using the Max/MSP graphi-
cal dataflow programming environment (similar to LabView)
which allows for rapid development cycles and the possibility
of making stand-alone applications directly. The functions of
this prototype system are outlined below: Data Acquisition,
Data Preprocessing, Intermediate Representation, Visual Map-
ping, Sonic Mapping, Visualisation and Sonification.

Fig. 13. Bio-music

2) Data Acquisition: The Data Acquisition module is
charged with interfacing to various hardware which can be
sources of live bio-data. In the current implementation, this
involves receiving data over ethernet and UDP/IP packets
which are formatted in the OpenSoundControl specification.
For the meantime, this is considered to be an acceptable
abstraction of the hardware-¿software interface. In future, a fa-
cility to load executable code libraries which could generically
interface to any given hardware as desired. It is envisioned
that this functionality might be provided by the OpenInterface
software project at a future date. It is also possible in the
Max/MSP environment to load ”external” code libraries which
encapsulate the functionality of executable code within the
Max environment. By this method, a different “external”
would be needed for every particular hardware interface.
Some simplification might be gained by the specification of
only USB external devices and further adoption of any Data
Acquisition over USB standards which are extant or pending.
That said, most major manufacturers of Data Acquisition
hardware provide standard libraries and SDKs to aid in such
development. In any case, the current UDP/OSC network
model for data acquisition will remain.

3) Data Preprocessing:The DAQ module passes the raw
data to the preprocessing (signal conditioning) module which
is responsible for normalising the ranges and characteristics
of the various acquired data. Thus almost methematical or
algorithmical transform can be applied to live data to change
its range or behaviours. For example, if you wish, all incoming
information can be converted to floating point numbers ranging
from -1.0 to +1.0, which could be done either via manual
adjustment or by an auto-adaptive process which would watch
the incoming values and make the adjustments automatically.

4) Mapping: Once the incoming signals have been nor-
malised as desired, the task is to map, or, to use a more
appropriate term, project, those signals onto the sonification
module in such a way that they produce a meaningful and
useful result. This is the area where it is imagined researchers,
scientists and even composers and musicians will spend most
of their time working. Much of the functionality of the other



modules is to standardise and simplify interfaces with data
sources and sinks. To aid in the flexible and rapid ability
of users to make fine-grained adjustments in this module, a
facility is provided for MIDI continuous controller parameters
from any kind of MIDI control surface to be used to adjust the
mapping parameters of this module. In this case, the software
was prototyped using the Behringer BCR2000, a sophisticated
yet easy to use and relatively inexpensive control surface using
rotary knobs to adjust continuous controllers. It should be
noted that there are similar but independent modules for the
mapping of data to visualisation and sonification processes
respectively.
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