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Abstract—Recent advances in new technologies offer a large of biological signals could benefit by using the richness of
range of innovative instruments for designing and processing the raw brain and muscle signals rather than just relying
sounds. This paper reports on the results of a project that 4, the results of analyses. Hence, we took the opportunity

took place during the eNTERFACEO6 summer workshop in . o . .
Dubrovnik, Croatia. During four weeks, researchers from the of this workshop to explore new fission/fusion strategies by

fields of brain-computer interfaces and sound synthesis worked conducting three experiments:

together to explore multiple ways of mapping analysed physiolog- , The first application was the sonification of EEG signals,
|ch S|g.nals'to soun.d and |m.age.synthe3|s parameters in order to using a vocal model, which could be either used as a
build biologically-driven musical instruments. A reusable flexible ical i di . |

framework for bio-musical applications has been developed and musica Instrument_or as a diagnostic _too .
validated using three experimental prototypes, from whence e« The second experiment was more directed to musical

emerged some worthwhile perspectives on future research. applications and interactive performance, and is aimed
Index Terms—EEG, EMG, brain-computer interfaces, digital to generating visual and sonic textures controlled by the
musical instruments, mapping results of EEG spectral analysis.
« The last application was a tentative attempt to extend the
|. INTRODUCTION hyper-instrument paradigm by building a physiologically
enhanced didgeridoo that relies on wearable sensor tech-

USIC and more generally artistic creation has often

drawn inspiration from the possibilities offered by , , , , . )
technology. For example, the invention of the piano was a 1MiS report is composed of five main sections: a history
key event in the emergence of romantic music. More recentf}f, Music and sonification controlled by biological signals;
the electric guitar and synthesizer have allowed elements&fheoretical framework which exposits the fission/fusion of
Jazz to move towards Pop Music. Digital signal processir%dog'cal signals in musical .appllcauons; a description qf the
and multimedia computers have enabled the creation of Agrdware and software architecture of our platform dedicated
overwhelming gamut of new sounds. More recently, work hdQ mu_5|f|cat|on of blologlc_al signals; a section WhICh details
begun to discover ways to control these new sounds with tif¢ different EEG analysis methods we have implemented;
ultimate goal of creating new musical instruments which aANd finally detailed descriptions of the experiments with some

nology [4].

playable in real-time. possibilities for improvement for each.

The present contribution is focused on the development of
new musical instruments activated by the electrical signals of Il. HISTORY AND THEORY OF SONIFICATION OF
the brain (EEG) and of the muscles (EMG). We are exploring BIOLOGICAL SIGNALS

features of bio-signals by mapping them to parameters Ofyyhereas the use of biological signals to control music sys-

computer-generated sounds. This work is the continuation Ofgns has a long and rich history dating back at least 40 years
project initiated last year during the first eNTERFACE workps) the contemporary notion of sonification of biological data
shop in Mons, Belgium [1] [2]. In our previous work we useqor ayditory display is relatively recent, the first articulated
inverse methods and left/right cortical activity dn‘ferent|at|org\,ritingS beginning to appear around 1994 [6]. Sonifications
- as in classical Brain to Computer Interfaces (BCI) [3] - 135 evidence or as objects of scientific knowledge also present
design the mapping between physiological signals and sougdcinating opportunities to interrogate notions of scientific
synthesis parameters. We felt, however, that the ‘musificatiop i and ontology. In fact, the practice of using sound as

This report, as well as the source code for the software develop@dtOOI for medical dlagnOSIS for example, dates back,more
during the project, is available online from the eNTERFACE’05 web sitthan 150 years to the development of the stethoscope b§ Ren

www.enterface.net. Laennec [7] and the attendant practice of mediate auscultation.
This research was partly funded by SIMILAR, the European Network

(o) . . . . . .
Excellence on Multimodal Interfaces, during the eNTERFACEO05 WorkshcléS listening to_ the body '_S one (_)f the most basic skills 'n a
in Mons, Belgium. standard medical education, trained doctors are thus highly

R. Lehembre was supported by a grant from the Belgian NSF(FRIA).  sensitive to sound and its implications for diagnosis. Simulta-
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for Computer Music Research, University of Plymouth, U.K. neously, over the past 150 years or so, scientific measurement
Jean-Julien Filatriau, &ny Lehembre and BeftoMacq are with the equipment has become increasingly sophisticated and precise.
Communications and Remote Sensing Laboratory, Unigersitholique de The possibility of making highly precise measurements of
Louvain, Louvain-la-Neuve, Belgium. .
Alexandre 2non is with the Neurophysiology Laboratory, Univezsit phenomena has - until recently however - been almost ex-

catholique de Louvain, Louvain-la-Neuve, Belgium. clusively destined for visual display. That is, the results of



these sophisticated measurements has been, to a very large
extent, primarily expressed in visual terms: as graphs, line
traces, charts, histograms, waterfall charts etc., either on paper
or some similar support, or on a luminous display such as a

Bio-signal analysis
Sound and image
synthesis

Context adaptation
(status and goals of
the user)

/

CRT or TFT computer screen. Recently, the notion of auditory \ Fission:Fusion
display of scientific or other information has become current. ; (mapping to)
Auditory display has several advantages over visual display { | Fission/Fusion
especially for critical applications largely due to the ways in y
which our auditory perceptual apparatus passes information ; BIO-MUSIC
to the brain. By using salient characteristics of sound, such as Olffah;fg;’/"Misp
rhythm, duration, pitch, timbre and harmonic/enharmonic con- 3
tent, it is possible to rapidly and accurately express complex, //l\
multimodal information in a manner which can be quickly — |
. . . Audio-visual H Enhanced S
and accurately grasped by a trained listener. Our auditory A instruments/ O?ck))?(;f_l:izt:;r:s
apparatus is capable of distinguishing very subtle differences lineghEe TS

in simultaneous, complex auditory streams and it can do
this very quickly and accurately [8]. Work has already been
done in the sonification of biological signals such as EEG
- notably by Gottfried Meyer-Kress and his early work in
EEG sonification - which has been furthered by a workshop at
ICAD2004 entitled "Listening to the Mind Listening” and even
more recently by a workshop and paper given at ICAD2006.
In a related field, Mark Ballora did pioneering work in theFig. 1. Framework for the design of biologically-driven musical instruments
sonification of the cardiac rhythms related to the diagnosis of

conditions such as sleep apnea [9]. In most of the precedi]n
cases, however, the sonifications were performed "offline”, th
is, not in real-time. The goal of this part of the project is t

Assessment

gmework is shown in Fig. 1. The central issue is the fission
rom each of the given input modalities (EEG and/or EMG in

develop a real-time system for sonification of biological dat}f!lS case) into salient features channels. These features chan-
Is are then fused into commands which activate different

Previous efforts along these lines have led to very speciﬁg : .
pects of the related sound and image synthesis processes.

solutions with particular hardware and software compone % f fissi f ds into th tout feat
which have proved hard to re-use and not sufficiently flexibl € process of Tission of commands into the output feature
annels which are then fused back into the global output

for diverse applications. Our goal, thus, is to begin work . o .
nal is also seen as part of the fission-fusion process.

upon a flexible, re-usable, open-source framework for the’. .
is process can be likened to the attendant processes of

generalized sonification of biological signals. This platfor s d thesis which tral to digital sianal
would provide a stable, re-usable, flexible and comprehens rc?c)ézlssir?gn resyntnesis which are so central to digital signa

environment for the sonification of human biological data id?
auditory display. This display would be useful for doctor Mapping
scientists, researchers and clinicians in the study and diagnosis ) o o
of normal and abnormal indicators. Much as this is primarily In the literature on digital musmal_mstruments [10], the term

a tool for scientific research, it is also envisioned as a usefflRPPINg refers to the transformations performed upon real-
tool for music technologists, composers and performers in @€ data received from controllers and sensors into control
realisation of musical forms which are driven by measurdifprameters that drive sound synthesis processes. One of our
biological phenomena. It is felt that a stable platform for suc@Piectives during this workshop was to design consistent
musical research is as useful in the musical sphere as it isHgPP!NGS betweer_1 biological signal _featu_res and_ sound syn-
the scientific one. In fact, an historical survey of biologicall{€SiS Parameters in order to create biologically-driven musical
driven music, such as brainwave music, shows periods '8ftruments and sonifications.

intense, productive activity followed by quiescent lulls wher .

very little happens. It is felt that these lulls are due in part tg Usability measurements

a lack of appropriate tools and techniques for consistent andlhe three systems will be improved based upon: assess-
repeatable musical realisation and thus, little opportunity férents of usability and aesthetics by musicians, aesthetic judge-

practices and mastery of bio-instruments such as brainwdi€nts by audiences, and quality of discrimination between
music. relevant EEG patterns in the case of sonification for diagnostic

purposes.

I1l. FISSION AND FUSION OF BIO-SIGNALS IV. THE PLATFORM ARCHITECTURE

A. Our proposed framework A. Towards an open source system

We proposed to model the design of musical instrumentsOur aim in the long term is to produce an entirely open
or sonifications as a fission-fusion process. Our theoreticaurce platform dedicated to the real-time analysis of EEG



C. Software

Our platform is currently implemented via four software
packages running on two computers which manage the specific
tasks required by the global application :

1) MedicalStudio-EEGToolboxAcquisition and visualisa-
tion is done using EEGToolbox, a plugin written in C++ for
MedicalStudio [15], an open source software platform for
medical data analysis and display which runs under Linux.
This toolbox saves the data and can also send it using UDP
to another computer running Simulink under Windows. The
connection between the biosignal amplifier and the computer
running Linux is made with a usb cable.

2) Matlab-Simulink: Matlab was chosen for easy code
generation. Although we had developed the previous year a
simulink program, we switched to Matlab in order to spare
a computer. This way, the acquisition and signal analysis is
made on the same Linux running computer. Simulink could
not be used because it suffers from different bugs under Linux
that makes it hard to use.

3) Max/Mspl/Jitter[16]: : Max/MSP is a graphical develop-
ment environment dedicated to real-time interactive applica-
tions. In use worldwide for over fifteen years by performers,
composers or artists, Max/MSP is a combinaison of Max
software for the control of musical applications through MIDI
protocol, and MSP, an add-on package for Max enabling the
manipulation of digital audio signals in real-time. Jitter is an
other additionnal library for Max environment, offering a large
range of real-time image and video processing tools.

signals and other biosignals for musical applications. Sinﬁﬁll) OpenSoundControl (OSC) : A link between Matlab and

. S o . axMsp: In order to transfer data between softwares, we
our work is multidisciplinary it involves using resources from . .
. : . used the OSC protocol [17] which sits on top of the User
different fields of study and thus different software packag .
. . atagram Protocol (UDP). It allows a fast and reliable data
are needed. During this workshop we used Matlab for the : .
. ; ) exchange since we work in a local area network. Packets are
analysis of EEG signals and Max/Msp/Jitter for the soun . - .
) . . sent with a header containing the name of the corresponding
and image synthesis. We plan to shift our development towaé

open source software like Octave [11], Python [12] anaata as well as_the size of the packet. '!'h|s makes it very uggful
since the receiving program can easily manage the arriving

PureData [13] in the future. In the following, we describe theackets. The maximum size for the packets is 65536 bytes

architecture of our system (Fig. 2) in a bottom-up way, frorﬁ)ng_ We were thus able to send the raw EEG signal and
hardware data acquisition to software implementation.

many features computed with matlab to Max/Msp allowing a
maximum flexibility (An excerpt from the code is detailed in

B. Hardware App. ).

1) EEG equ[pment:EEG signals are recorded w_|th cHi V. FISSION OF BIO-SIGNALS
[14] cap containing 18 electrodes located according to the i
10/20 international positioning system. The signals are ampft: Introduction
fied with an biosignal amplifier provided lti with a gain of ~ We worked with two different bio-signals, EEG and EMG.
10 and a default sampling rate of 128Hz. Due to limitation¥/e describe in this section how to operate a fission of these
in real-time signal processing, we sampled at 64Hz. Ongignals in order to extract relevant features. Let us present
captured, the data is then bandpass filtered between 0.5 andp@efly these two kind of signals:
Hz to remove extraneous signals, was used as a reference « The EEG signal is a rich and complex reflection of
electrode whileP, was taken for the ground. neuronal electric activity that takes place in the brain.
2) EMG equipment:For EMG signals, we worked with Since the first electroencephalogram recording made by
the same equipment but changed the gain to 1000 since EMG Berger in 1929, different waves have been described
signals have much larger amplitudes than EEGs. Disposable corresponding to several frequency bands. Although these
electrodes were used, 3 per muscle, with one as a reference waves are well known, their frequencies and amplitudes
and placed near a bone (i.e. elbow or knee), a second was are not directly under subject’s control, but only reflects
posed along the muscle (belly-bone junction), the third, taken very general states of the brain. Therefore, using a simple
as ground, was via a conductive bracelet worn by the user. frequency analysis as input to the sound synthesizer will

OSC protocol

Max/MSP/Jitter

Loudspeakers

Fig. 2. Architecture of our bio-music platform
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Fig. 3. Recorded EEG, a 13Hz alpha rythm can be observed. The user was
in a drowsy state after a heavy lunch and had taken an espresso

stimulation, as for example, when the user closes his eyes.
In contrast, any visual stimulation lead to posterior alpha
desynchronization. Therefore it is a good tool for our
application since it can be used as a switch. Alpha waves
could also be associated to conscious visual perception
[19].

Beta (12-24 Hz): Extending over a large bandwidth, the
beta activity reflects intense activity such as listening,
taking decisions, or more generally, arousal. It is a
dominant rythm in the normal adult awake EEG.

Mu rhythm: This rythm, as the alpha rythm is between 8
and 12 Hz but is specific to imaginary or real movements
[20]. It is located in the motor cortex and is contralateral
to the movement i.e. for a left hand movement, a desyn-
chronization will appear in the right hemisphere.

not allow enough controllability. Other, more complex et us recall that the frequencies given above are not strict
signal properties can reveal more useful. On an otheiit subject dependent. The control of these waves by the
hand, EEGs have a very good time resolutiomofms subject can only been achieved following extensive training.
unbeaten by recent methods (fmri..). This property is vepys a consequence, it is difficult to produce a controllable EEG
valuable for the purpose of musical instrument contr@riven musical instrument on the basis of the amplitudes of
and should be taken care of. Finally, since electrodes ah@se signals alone. However we can derive a few indicators
placed at different locations, it is important to take intérom a spectral analysis:
account the spatial information. 1) Frequency ValuesA Fast Fourier Transform was used

« The EMG signal is produced by the electrical potentiab compute the frequency. We used a 1 sec window to compute
generated by muscle cells. The increase in contractiar@2 points transform
strength of the muscle is associated with an increase in2) Spectral Entropy: The spectral entropy, a measure
the number of cells that produce electrical potentials (desidely used showing the complexity of a signal, is computed
polarisation), and hence an increase in signal amplitude.order to detect salient rhythms. It is given by:

This signal contains two main waves, a low frequency
wave that describes the movement, and a higher fre-
quency wave that includes more precise information on

the electrical activity of the muscles. Due to hardwar\g\z,here I

Hy == pyin(py) 1)
f

is the probability density function (PDF) that rep-

Ii_mitations, we focused on the the lOW_ frequency ba'f‘%sents the normalization of the power given at frequeficy
(i.e. the envelope of the signal). The higher frequenu@ggarding the total power spectrum:

could be used in a further version of the project to take

advantage of their higher temporal resolution. Py = Zsf with f € R and f < 32 (2)
781
B. EEG fission according to frequency bands 3) Spectral EdgeThe spectral edge is the frequency under
We describe here the partition of the EEG into frequendyhich 95% of the spectral energy can be found This value
bands gives an indication of where the signal is concentrated.

« Delta (0.5-4 Hz): This wave has first been discovered t%
W. Gray Walter in 1936 with a patient that had a tumo
Thus in the awake, it is quite alarming to present the slo
characteristic waveform of the delta rythm. Howeve
for a sleeping person, high amplitude delta waves al
normally present in the EEG. For our application it
appears evident that this rythm will not be of great use
unless we create a composition for sleeping performer.F

o Theta (4-8 Hz): Scientists still debate whereas thefa
activity is relevant to an early drowsiness state or if it
reflects some kinds of mental activity. Nonetheless it is

4) Asymmetry ratio: In order to detect when the user
akes left or right side movement, we use a very simple tool
Wat computes the normalized difference between the power
ontained in the mu rythm of two electrodes located in the
eft and right motor cortex (i.eC3 and C4):

Cs,8-1212) — Ca,[8-12H2]

F[8—12Hz] =

3

Cs,8—1212] + C4,[8-12H2

|
his ratio has values between -1 and 1, the sign indicating the
de of the body that was moved

a faster rythm than delta and could be linked to braify- EEG fission according to signal spatialization
activities such as memory [18], or can be modulated by As mentionned above, taking into account the position of
visual stimulation (ref). the electrodes is extremely important in EEG analysis. Two

« Alpha (8-12 Hz): Alpha rythm is a leading indicator ofsimilar methods, the Common Spatial Subspace Decomposi-
subject’s relaxation. Alpha synchronization (leading tton (CSSD) [21] and the Common Spatial Patterns (CSP)
amplitude increase) occurs in the absence of any visyaPR], extract information from the most relevant electrodes.



o P(p) is the a priori knowledge we have about the
sources.
« P(¢) is a normalizing probability that can be neglected

Finding the best solution to the inverse problem comes down to
maximizing thea posterioriprobability. This can be achieved

in various ways as different methods have been proposed
during the past 15 years [26] [27]. We implemented the
LORETA algorithm because it gives a maximally smooth

solution.

3) Features: Four features are derived from the solution
Flg 4. Inverse Problem visualisation : The black dots are the location ef the |nverse problem and are sent to the Sound process|ng
the sources . L .
unit. To compute these features, we divide the source space in
four subspace representing the frontal, occipital, left and right

These methods are known to be the most accurate in §RhSori-motor parts of the brain. This decomposition is based
BCI community. However they imply offline preprocessing” th.e.fact that the frontgl zone is §s§ociateq Wit.h memory gnd
and low variability between sessions which in our case f99nitive processes while the occipital region is linked with
seen as a limitation. Indeed, our aim is to produce live musfSualization. Left and right motor-cortex side are associated
in different environments thus rendering a training sessidfth |€ft and right limbs movement. This is a very simplistic
obsolete. An other method that is starting to gain success'|g§W of the brain but is adopted as a first approximation.
based on the principle that the EEG signals are generated by

sources (i.e. assemblies of neuronal cells that when combined

produce a sufficiently strong current that can be measuredDat Further work : EEG fission in 3D

the surface of the scalp) and that the propagation of eIectrica\N di d lier the i . f taking int ¢
currents through brain tissues can be modeled with Maxwel]'s € discussed earlier the importance of taking Into accoun

equations. Therefore using a model of the brain it is possit}n}e s_pectral, spatial .and temporal |nfo.rmat|on .Of the I.EEG' we
tgdled some techniques of spectral information retrieval and

to reconstruct the activity of sources and gain access to th . . . . :
y 9 echnique to improve the spatial resolution. We could in

spatial location of brain processes. Besides, this method offér . )
uture approach combine the inverse problem and spectral

a visualisation of the activity. Having described this method . :
in [1], we will briefly resume the main steps of this methodmethOds' Another approach would be to work with spherical

1 ) ._harmonics using an interpolation of the electrodes on a half-
) Head Model: We used a four spheres head approxima- . ? : S
tion based on [23] ,[24] and [25]. Each layer represent, tﬁghere. Finally, mcludmg tgmporal constraints in the IP could
. . : the obtained solutions.
brain itself, the cephalo-rachidian liquid, the cranial box ang'Prove
the scalp. There are 400 dipoles (Fig. 4) distributed over the
cortex (the surface of the first sphere). As an approximation,
deep sources are not taken into account. The potential mea-
sured on then electrodesg, is linked to the value of then
sourcesyp, according to the lead field matré&x and additionnal
noisern: The current implementation of sonification uses a
p=Gp+n (4) source-filter voice synthesis model developed by Nicolas
) o ) D’Alessandro and others [28] which in this case has been
The lead field matrix is computed once for a given heaneq to emulate the multi-phonic singing chants typically
model and remains constant further on. Knowindrom the rq4yced by Tibetan Gyuto monks or by Tuvan traditional
recording, we wish to findp. Unfortunately this so-called ¢y singers. The voice synthesis model as delivered, exposes a
inverse problem is an ill-posed problem since the number g ite set of functionalities with given ranges. In the interests
unknowns is muph greater_ than the data at hand. Following g proper encapsulation and OO design, we respect these
a short description of the inverse problem givens and will work with them. In this case the controller

2) Inverse Problem:Solving Eq. 4 can be done using amappings used the F1-4 formant frequencies whilst the FO was

VI. EXPERIMENTS

A. Sonification (Mocalisation) of EEG

bayesian formalism : not directly controlled. Additionally, parameters representing
P(|p)P(p) “tension”, “hoarseness”, “chest/head balance” and “fry” were
P(plo) = W () also controllable. Any available mapped data source (alpha,
beta, theta, mu etc.) can be used as a controller for any of the
where: synthesis parameter. It was found that the formant frequencies
» P(¢|¢) stands for thea posterioriprobability to have the were best controlled by signals which do not change too
source distributionp matching¢ quickly or vary too greatly. A facility is available to control

o P(¢|p) is thelikelihood i.e the probability to have the the positioning of any generated sound source with respect
given data according to the sources. It depends on thigher to a stereo sound field or to a 5.1 quasi-surround sound
quality of the recording and on the head model field.



ocal Tract Filter (VocalTract.pat) That function implements 4 formants filters
contraliable in gain, central frequency and 0.
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the energy in the 32 bands of the spectrum of the signals
measured by each of the 18 electrodes. A crossfading effect
between consecutive matrixes is then achieved allowing to
Formant 4 obtain a continuously and smoothly changing image. This
moving image is then distorted: firstly a linear interpolation is
done in order to blur the image. At this step of the process,
the resulting image is a grayscale texture derived from the
space/frequency representation of the EEG analysis (Fig. 7).

Fig. 5.  Vocal Tract Filter realised by Nicolas d’Alessandro et al. | B 18 electrodes
implements four formants controllable in gain, central frequency and Q.

Results: Due to the highly prototypical nature of this
platform, no extensive testing was done and it is thus n
possible to provide comprehensive analyses of the relati
success or failure or suitability of this platform for any currer S - -
intended usage. Test that were made did indicate that be n L a
functionality of modules and the software as a whole Original matrix Textured image
intact and operational yet many improvements in precision,
usability and flexibility are still lacking. Going forward it is Fig. 7. Creation of a grayscale textured image from the space/frequency
envisioned that these characteristics will be ameliorated 'S§resentation of brain activity
that the platform will become a flexible, stable, consistent a
useful tool for scientists, medical professionals and musici
in the future.

l Interpolation

Frequency bands
(0-32 Hz)

I:\Ghen we apply a colorization process, based on color lookup
Ables, to remap grayscale into colored image. Lookup tables,
also called transfer functions, are arrays of numbers where
an input number is ’looked up’ as an index in the table. The
B. EEG driven audio-visual texture synthesizer number stored at that index is then retrieved to replace the
In this instrument we tried to link three modalities byoriginal number. In our case, we use lookup table to convert
exploiting results of EEG frequency analysis to control both monochrome into RGB value. In grayscale image, low-
visual and sonic textures synthesis modules (Fig. 6). Themergy areas are represented in black and gradually whiten
approach aimed to provide a visual feedback to the pevhen energy increases. Our colorization process modifies
former/audience enabling a better understanding of the fiee color associated to maximal energy, by defining a new
sion/fusion process. Practically, the image synthesis moduai@or scale that will map in the resulting image high values,
takes as input parameters data received from EEG analymiginally represented in white, to a new color defined by the
module, whereas sound synthesis parameters are extracésllt of EEG analysis image. The choice of the color, called
from both the output image and the results of EEG analysiS, associated to the maximum of energy, is driven by the
This strategy of linking synthesis processes should enablaliatribution of energy between the alpha, beta and theta bands
strong correlation between resulting image and sound. Baththe EEG signals. The three RGB components of this color,
synthesis modules have been implemented in Max/MSP englr.q, Careen @and Ceye, are thus weighted by the level of
ronment, the image processing tasks relying on the specializrtergy L., Lg, Ly in the three frequency bands alpha, beta
additional library Jitter. Following sections give more detailand theta respectively (Fig. 8). We obtain by this way a direct
on both image and sound synthesis modules. link between the color of the resulting image and the maximal
1) Creation of the visual textureThe starting point of the energy frequency band of the EEG analysis.
creation of the visual texture is a space/frequency representathe color lookup table is refreshed as soon as new values
tion of cerebral activity: each second the EEG analysis moddtg alpha, beta, theta bands are received from EEG analysis
transmits to the visualization module a matrix containinnodule, i.e. one time per second, The transfer function used
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Colorization

- - . is geometrically distributed in the spectrum (constant energy
Grayscale texture Colored texture per octave). The implementation of subtractive synthesis in
the Max-MSP environment is based on the fffb object (fast
Fig. 8. Colorization of the texture following the distribution of energy infixed filter bank), that models a bank of 32 bandpass filters.
alpha, beta and theta bands This object takes as input a list of 32 values controlling the
gain of each filter. In our instrument, this list is obtained from
the visual texture created from EEG analysis by the following
process (Fig. 11) : a sliding window extracts a sharp vertical
band of the image (step 1), whose values are stored in a 1-D
vector (step 2). This vector is then downsampled to obtain a
list of 32 values (step 3) that will be used to drive gains of three
filter banks (step 4). In order to musically enrich the resulting
sound, we placed three filters bank in parallel, that resonances
are differently distributed in the spectrum, implying each of
the filters bank to produce its proper and discriminable timbre.
Final synthesized sound is a mix of these three sounds whose
loudness are respectively controlled by the level of energy in
Fig. 9. Textures qbtaine(_i from the same grayspale texture using differg\ﬁvte alpha, beta and theta frequency bands extracted from EEG
color transfer functions. Rightmost and leftmost images correspond to | . . o . .
and high level of entropy of the signal respectively. analysis (step 5), in a similar way of the weighting of RGB
components of the final color in the colorization process of
the visual texture. This enables a strong correlation between
for image in Fig. 8 is linear, but it is also possible to ussynthesized image and sound, both driven by the results of
non linear lookup tables, that give interesting effects on tHeEG frequency analysis. Videos demonstrating this instrument
resulting image and allow to obtain quite different types adre available online [29].
visual textures, as shown in Fig. 9. In our instrument six 3) Results and future worksOne aim of this work was
predefined color transfer functions were available, and the build a brain-computer interface linking image and sound
choice among them was driven by entropy of the EEG signatynthesis processes to EEG analysis. We reached this objective
which is an indicator of state of relaxation of the subjechy designing a subtractive synthesis instrument that spectral
Mapping was done such a way that a dropping of the entropyvelop is extracted from a visual texture resulting of EEG
results a more contrasted image. analysis. This approach enabled to establish a clear relation
2) Translation in sonic textureThe translation of the visual between output image and sound. In the future some main
texture created from EEG analysis into sound is based tacks of improvement should be investigated. Firstly it would
one of the most popular technique of sound synthesis, the interesting to modify the space/frequency representation
subtractive synthesis, widely used in musical applications suahbrain activity that is the basis the creation of the visual
as analog synthesizers. The basic principle of subtractisxture. Indeed, a spherical representation relying on the lo-
synthesis is the use of complex waveforms, rich in harmontalization of the electrodes on the scalp would be closer to the
or inharmonic information, which are then spectrally shapeattual spatial brain activity. Concerning the image-to-sound
by filters bank. In subtractive synthesis, the spectral envelopanslation, other sound synthesis technigues should be tested,
of the resulting sound is the product of the spectral envelopech as additive or granular synthesis, in order to enhance the
of the source with the frequency response of the filters ban&rrelation between the synthesized visual and sonic textures.
(Fig. 10). For this it would be interesting to exploit existing works in the
Here we used as audio source a pink noise, whose enefigyds of image sonification and auditory display [30]. Finally,

min max min max

min max
(2) (3)

(1)
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Fig. 12. General scheme of the enhanced didgeridoo

Fre T Frequency (Fz) This instrument was running on two computers, one man-
Pk Noise @ @ aging Medical Studio for the capture of EMG signal and

Filter Source

the other one running Max-MSP for the implementation of
digital audio effects. EMG signal, captured with Medical
studio, was transferred to Max/MSP, where spectrum centroid,
entropy and signal power around a frequency band of 8 Hz
were computed. These resulting signals were differentially
modulated by leg movements in such a way that the subject
was able to control each of them, more or less independently.
Two digital audio effects modules were thus designed: in the
Output Sound first one, entropy of the EMG signal, which was the most
easily controllable parameter, was used to modify the cutoff
frequency of a bandpass filter applied on the didjeridoo’s
sound. Spectrum centroid controlled a very slight pitch shifting
Fig. 11. Image-to-sound texture translation driven by EEG frequency analygigith a maximum ratio of 1.05) and power in the 8 Hz band
controlled the cutoff frequency of a bandpass filter which was
used in a feedback loop inside a granular synthesis process.
we should keep working on the improvement of mapping the second audio effect module, we used entropy of EMG
between EEG analysis features and synthesis parameterssidfhal to drive two simultaneous pitch shifting processes,
this instrument, the user was actually not able to control thie moving downward and another one moving upward.
resulting image and sound, mainly because data we interpygleos demonstrating these experiments are available online
as input parameters in the synthesis modules (spectral con{gny. These quite simple experiments demonstrated the musi-
of EEG signals) are hardly controllable by the human. In ordeal potential of EMG-enhanced musical instruments: indeed
to increase the playability of the instrument, it could be wortthapping audio effects parameters with muscles contraction
to add in the mapping easily controllable parameters such&sems to get their control very intuitive and expressive. In
EEG features linked to eye blinking. More generally the designe future we will pursue to investigate this field by testing
of a mapping between EEG analysis results and synthegigre complex configuration of EMG-enhanced instrument,
parameters in such a brain-computer interface requires \ith multiple captors on several areas of human corpus (arms,
explorative and inventive approach that could only be reachgéck), providing an actual measure of the physical activity
by intensive experimental sessions. of the musician. Similar experiments will be also carried out
with other musical instruments (clarinet, accordion), taking
into account the specificity of musical gestures associated to
C. EMG enhanced didgeridoo each instrument for the design of captors configuration and

[ Filter bank F1_] Filter bank F2 ] #ﬁter bank F3

(5) (5) ()
La LB Lg

The third experiment we led during this workshop aimef'aPping strategy.
to design an EMG-enhanced didgeridoo. The didgeridoo is an
Australian traditional wind instrument, sometimes described VII. CONCLUSION AND FURTHER WORKS
as a wooden trumpet or a drone pipe. Because it is maddBuilding on the experience gained during the eNTER-
up without keys, pitch produced by a didgeridoo is limite6ACE’05 workshop, we have explored new horizons in bio-
in a quite sharp range of frequencies, directly related to thausic. Last year we focused mainly on left and right hand
dimensions of the instrument. In this experiment we tried tmovements thus working with limited inputs to the sound
exploit EMG captors measuring contraction of muscles on osgnthesis algorithms. Our current approach is to take max-
leg to enlarge the possibilities of the musician, especially imum benefit of the richness of the EEG by extracting as
extending the range of pitch produced by the didgeridoo. many independant features as possible. We have adapted our



architecture to enable multi-dimension data transfer betwe 5IO-MUSIC &5
Matlab and MaxMsp. More sophisticated mapping could the =
be made under MaxMsp giving a higher correlation betwet b Data Acquisition |™= [p Test
sound and EEG analysis. The gap between art and science |
filled by combining a relevant and aesthetic visual feedbac
However the question of controlling the instrument remair [p_Intermediate Representation |
open as the development of the interface itself did not lea b Visual Map) b Sonic Map |
Il [1[]
|

ERRREE R

p Data Preprocessing \

enough time for a necessary training and assessment step. [T
underlines the amount of work left to achieve an instrume p Visualisation| [p Sonification]

that could be in the future the equal of traditionnal instrument F F ’, T T T
AN i ‘:‘

We will focus in the future on two parts that seem importar
to us. First the migration of the platform to an open sourc
software platform using Opentinterface will allow the sharin
of our results and perhaps trigger new partnerships. The sec:
and last step, but certainly not the least, will be to achie\ ===
a better control of the instrument itself. This means many
training sessions over a long period of time. The authof®- 13-
are dedicated to pursuing their goal of achieving an entirely
biological music.

Bio-music

2) Data Acquisition: The Data Acquisition module is
APPENDIX | charged with interfacing to various hardware which can be
OPEN SOUND CONTROL sources of live bio-data. In the current implementation, this

In order to implement OSC, we use the freely availablié‘V9|Ves receiving da_\ta over ethernet and UDP/IP_pacI_<ets
tcp-udp-ip toolbox for Matlab. The pnet function allows tgvhich are formgtted in the Oper!SoundControI specification.
create a packet and send data through a UDP connectior.Qf the meantime, this is considered to be an acceptable
is possible to include different headers in the same packapstraction of the hardware-¢software interface. In future, a fa-

done with the following code: interface to any given hardware as desired. It is envisioned

that this functionality might be provided by the Openinterface
% head of the message software project at a future date. It is also possible in the
header = [F1,F2'..] Max/MSP environment to load "external” code libraries which
for j=1:nbrElectrodes encapsulate the functionality of executable code within the
pnet(udp, write’, /header(j,:)"):; Max environment. By this method, a different “external”
% mandatory zero to finish the string would be needed for every particular hardware interface.
pnet(udp, write’,uint8(0)); Some simplification might be gained by the specification of

only USB external devices and further adoption of any Data

% comma to start the type tag
pnet(udp,'write’,")");

% number of float to write

for i=1:sizedata
pnet(udp,’write’,'f");

% data to send
pnet(udp,'write’,single(data(i,j)));

Acquisition over USB standards which are extant or pending.
That said, most major manufacturers of Data Acquisition
hardware provide standard libraries and SDKs to aid in such
development. In any case, the current UDP/OSC network
model for data acquisition will remain.

3) Data PreprocessingThe DAQ module passes the raw
data to the preprocessing (signal conditioning) module which
is responsible for normalising the ranges and characteristics
of the various acquired data. Thus almost methematical or

The source code is available online on the enterfaggorithmical transform can be applied to live data to change

website.

APPENDIXII

DiscussiONSs ONBIO-MuUsIC

its range or behaviours. For example, if you wish, all incoming
information can be converted to floating point numbers ranging
from -1.0 to +1.0, which could be done either via manual
adjustment or by an auto-adaptive process which would watch

1) The BIO-MUSIC Platform: The Bio-Music platform the incoming values and make the adjustments automatically.
(Fig. 13) is being prototyped using the Max/MSP graphi- 4) Mapping: Once the incoming signals have been nor-
cal dataflow programming environment (similar to LabViewinalised as desired, the task is to map, or, to use a more
which allows for rapid development cycles and the possibiligppropriate term, project, those signals onto the sonification
of making stand-alone applications directly. The functions ofiodule in such a way that they produce a meaningful and

this prototype system are outlined below: Data Acquisitiomseful result. This is the area where it is imagined researchers,
Data Preprocessing, Intermediate Representation, Visual Mapientists and even composers and musicians will spend most
ping, Sonic Mapping, Visualisation and Sonification. of their time working. Much of the functionality of the other



modules is to standardise and simplify interfaces with datzs] P. Berg and M. Scherg, "A fast method for forward computation

sources and sinks. To aid in the flexible and rapid ability of multiple-shell spherical head models.”, Electroencephalography and

. . . . . clinical Neurophysiology, vol. 90, pp. 5864, 1994.
of users to make fine-grained adjustments in this module,3,°}'c osher RM. Leahy and P&, Lewis, "EEG and MEG: Forward

facility is provided for MIDI continuous controller parameters  solutions for inverse methods”, IEEE Transactions on Biomedical En-

from any kind of MIDI control surface to be used to adjust the _gineering, vol.46, 1999, pp.245-259. , o
. f this module. In this case. the softw. Zr%] S. Baillet, J.C. Mosher and R.M. Leahy, "Electromagnetic brain map-
mapping parameters o : ’ ping”, IEEE Signal processing magazine, November 2001, pp.14-30.

was prototyped using the Behringer BCR2000, a sophisticatee] C. Michel, M. Murray, G. Lantz, S. Gonzalez, L. Spinelli and R. Grave

yet easy to use and relatively inexpensive control surface using 4¢ Peralta, "EEG source imaging”, Clinical Neurophysiology, vol.115,
2004, pp. 2195-2222.

rotary knobs to adjusj‘ gontinuops controllers. It should B8, pascual-Marqui and Roberto Domingo, "Review of methods for solving
noted that there are similar but independent modules for the the EEG inverse problem”, International Journal of Bioelectromagnetism,
mapping of data to visualisation and sonification processes 1999, pp.75-86. : .
vel [28] C. d’Alessandro, N. d’Alessandro, S. Le Beux, J. Simko, F. Cetin and
respectively. H. Pirker, "The speech conductor : gestural control and synthesis” In
proceedings, eNTERFACE’'05, Mons, Belgium
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